
Written Comprehensive Examination - Theory

Department of Statistics, UC Irvine

Friday, June 18, 2021, 9:00 am to 1:00 pm

• There are 7 questions on the examination. Select any 5 of them to solve. If you attempt
to solve more than 5 questions, you are only to turn in the 5 you want graded. If you
turn in partial solutions to more than 5 questions, only 5 will be graded.

• Each of the 5 problems you attempt to solve will be worth equal credit, with each
accounting for 20% of your final score on this examination.

• Your solutions to each problem should be written on separate sheets of paper. Label
each sheet with your student identification number, the problem number, and the page
number of that solution written in the upper right hand corner. For example, the labeling
on a page may be:

ID# 912346378

Problem 2, page 3

• You have 4 hours to complete your solution. Please be prepared to turn in your exam
at 1:00pm.
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1. A task can be done using any of three different machines.

• Machine A involves one single step, with the time (X) completing the step following an
exponential distribution with the mean time being 2 hours, i.e., fX(x) = 1

2e
−x/2, x > 0,

where fX(x) denotes the pdf of X.

• Machine B requires two steps with the time for completing step i follows an exponential
distribution with mean 1 hour, i.e., fYi(yi) = e−yi , yi > 0, i = 1, 2. We assume that Y1
and Y2 are independent.

• Machine C uses two independent engines and the job will be done as long as one engine
completes the job. Let Zi (where i = 1, 2) be the time required by the ith engine. It
is known that Zi follows an exponential distribution with mean 4 hours, i.e., fZi(zi) =
1
4e
−zi/4, zi > 0, i = 1, 2.

(a) Let Y be the time required for Machine B to complete a job. Find the mean and
variance of Y . Between Machine A and Machine B, which one is more reliable in terms
of variance?

(b) Argue that, from a statistical point of view, there is no difference between Machine A
and Machine C.

(c) Between Machine A and Machine B, which one is more likely to finish a job within 2
hours? Answer this question by computing Pr(X < 2) and Pr(Y < 2).

(d) Suppose there are 10 jobs on a certain day and the probability that a job is assigned to
Machine B is 10%. Let T be the total time needed to finish the 10 jobs. Find E(T ) and
V ar(T ).

(End of Problem 1)
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2. Let Y1, Y2, · · · be a sequence of independent random variables with Yi ∼ Binomial(i, 1/i), i =
1, 2, · · · .

(a) Use moment generating function (mgf) to show that the sequence converges in distribu-
tion to X where X follows a Poisson distribution.

(b) Show that V ar(Ȳn) < 1
n , where Ȳn = 1

n

∑n
i=1 Yi.

(c) Give the definition of convergence in probability.

(d) Chebyshev’s inequality says

P [g(X)) ≥ r] ≤ E[g(X)]

r
,

where g(·) is a non-negative function and X is a random variable. Use Chebyshev’s
inequality to prove that Ȳn converges in probability to 1.

(e) Based on (d), what can you say about
√
Ȳn? Justify your answer.

(End of Problem 2)

3



3. Let X1, . . . , Xn be a random sample from a distribution with the following pdf:

fX(x|θ) =
x

θ
exp

(
−x

2

2θ

)
,

where x > 0 and θ > 0. The mean and the variance of the distribution are

E(X) =

√
πθ

2
, Var(X) =

4− π
2

θ.

(a) Find a minimal sufficient statistic for θ.

(b) Find the method of moment estimator for θ based on the first moment, and show if it is
an unbiased estimator or not.

(c) Find the maximum likelihood estimator for θ, and show if it is an unbiased estimator or
not.

(d) Calculate the Cramer-Rao lower bound for unbiased estimators of θ, and show if the
best unbiased estimator of θ attains the Cramer-Rao lower bound. If yes, find the best
unbiased estiomator. Otherwise, justfy your answer.

(e) Calculate the Cramer-Rao lower bound for unbiased estimators of θ2, and show if the
best unbiased estimator of θ2 attains the Cramer-Rao lower bound? If yes, find the best
unbiased estimator. Otherwise, justify your answer.

(End of Problem 3)
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4. Let X1, . . . , Xn be a random sample from a N(θ, σ2) population. Consider testing

H0 : θ ≤ θ0 versus H1 : θ > θ0.

(a) If σ2 is known, show that the test that rejects H0 when

X̄ > θ0 + zα
√
σ2/n

is a test of size α, where X̄ is the sample meant and zα is the upper 100α-th percentile
of a N(0, 1) distribution.

(b) Show that the test in (a) can be derived as a likelihood ratio test (LRT).

(c) Show that the test in (a) is a uniformly most powerful (UMP) test.

(d) If σ2 is unknown, show that the test that rejects H0 when

X̄ > θ0 + tn−1,α
√
S2/n

is a test of size α, where S2 is the sample variance and tn−1,α is the upper 100α-th
percentile of a Tn−1 distribution.

(e) Show that the test in (d) can be derived as an LRT.

(f) Now assume X1, . . . , Xn are not necessarily generated from a normal distribution, but
from some unknown distribution with mean θ and variance σ2. Show that the test in
(d) is a test of size α asymptotically.

(End of Problem 4)
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5. Use one-way ANOVA as an example to describe and explain

(a) over-parameterization;

(b) estimable and non-estimable functions;

(c) identifiability constraints;

(d) Gauss-Markov theory.

(End of Problem 5)
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6. In statistical modeling, one frequently encountered problem is nuisance parameters. For
example, in linear models we might have covariates whose coefficients can be considered as
nuisance parameters. Although their effects are not of primary interest, failing to adjust for
these effects will lead to biased estimates and violates the exchangeability assumption that
is required by permutation tests, which are special nonparametric resampling tests. Let’s
consider a linear model

Y = Xβ + Zγ + ε, ε ∼ N(0, σ2In)

where In is the identity matrix of size n, Y is a random vector of length n, Zn×1 and Xn×p
are fixed matrices with rank(X) = p ≥ 1, β ∈ Rp and γ ∈ R are the coefficients of X and Z,
respectively. The parameter of interest is γ.

(a) One intuitively reasonable approach is to first regress Y on X to obtain the residuals,
denoted by e, and then regress e on Z to make inference about γ. Show that e =
(In − P )Y where P = X(XTX)−1XT .

(b) Find the variance-covariance of e and show that the n residuals are not independent.

The correlated residuals make the above procedure not attractive. A more interesting
approach is to find an n × (n − p) transformation matrix G such that GGT = In − P
and GTG = In−p. In class we showed the existence of such matrix G for a projection
matrix. Based on this, answer questions (c)-(e).

(c) Let Ỹ = GTY and Z̃ = GTZ. Show that Ỹ ∼ N(Z̃γ, σ2In−p).

(d) Let γ̃ denote the LSE of γ based on Ỹ and Z̃. It is not difficult to find that the the
residual sum of squares is

RSS = Ỹ T (In−p −
Z̃Z̃T

Z̃T Z̃
)Ỹ .

Show that RSS/σ2 ∼ χ2
n−p−1.

(e) Based on the results in (c) and (d), describe how you can construct a 100(1− α)% C.I.
for γ. Note that σ2 is unknown and has to be estimated from Ỹ and Z̃.

(End of Problem 6)
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7. Mitochondria are cell organelles that generate energy for cells to perform their functions.
Mitochondria have their own DNA, distinct from the rest of the cell DNA that is stored in
the cell nucleus. Mitochondrial DNA sequences mutate faster that the nucleic DNA and, as
a result, have more information about evolutionary forces that shaped genetic diversity we
observe today. Suppose we have aligned mitochondrial DNA sequences from humans and
chimpanzees. We store these aligned sequences in a 2× L matrix:

y =

(
y11 y12 · · · y1L
y21 y22 · · · y2L

)
,

where yij ∈ {A,G,C, T} and L is the sequence alignment length. We would like to estimate
divergence time of these two species (time to the most recent common ancestor of the two
species) using this DNA alignment. First, to make this problem tractable, we assume a
known mutation rate α = 0.025, measured in the number of mutations, per genomic location,
per million years. One simple model of DNA mutational process, known as a Jukes-Cantor
model, says that the sequence alignment can be condensed into a sufficient statistic N1 =∑L

i=1 1{y1i 6=y2i} — the number of variable columns in the sequence alignment. Under the
Jukes-Cantor model, columns in the sequence alignment are independent and identically
distributed, and

Pr(y1i 6= y2i) =
3

4

(
1− e−αt

)
,

where t is the human/chimpanzees divergence time, in millions of years.

(a) Show that the maximum likelihood estimator (MLE) of the divergence time is

t̂ = − 1

α
ln

(
1− 4

3

N1

L

)
.

What conditions should N1 and L satisfy for this MLE to exist?

(b) Use observed Fisher information to derive the asymptotic variance of t̂.

(c) Instead of the Fisher information, use asymptotic normality of N1/L and the delta
method to derive the asymptotic variance of t̂.

(d) Use α = 0.025, N1 = 975, and L = 9993 to obtain the MLE and an asymptotic 95%
confidence interval for the divergence time t.

(End of Problem 7)
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Table 1: Common distributions and densities.

Distribution Notation Density
Bernoulli Bern(✓) f(y|✓) = ✓y(1 � ✓)1�y

Binomial Bin(n, ✓) f(y|✓) =
�

n
y

�
✓y(1 � ✓)n�y

Multinomial Multi(n; ✓1, ✓2, . . . , ✓K) f(y|✓) = n!
y1!y2!...yK !

✓y1

1 ✓y2

2 · · · ✓yK

K

Beta Beta(a, b) p(✓) = �(a+b)
�(a)�(b)

✓a�1(1 � ✓)b�1I(0,1)(✓)

Uniform U(a, b) p(✓) =
I(a,b)(✓)

b�a

Poisson Pois(✓) f(y|✓) = ✓ye�✓/y!

Exponential Exp(✓) f(y|✓) = ✓e�✓yI(0,1)(y)

Gamma Gamma(a, b) p(✓) = [ba/�(a)]✓a�1e�b✓I(0,1)(✓)

Chi-squared �2(n) Same as Gamma(n/2, 1/2)

Weibull Weib(↵, ✓) f(y|✓) = ✓↵y↵�1 exp (�✓y↵) I(0,1)(✓)

Normal N(✓, 1/⌧) f(y|✓, ⌧) = (
p

⌧/2⇡) exp [�⌧(y � ✓)2/2]

Student’s t t(n, ✓, �) f(y|✓) = [1 + (y � ✓)2/n�2]
(n+1)/2

⇥ �[(n + 1)/2]/�(n/2)�
p

n⇡

Cauchy Cauchy(✓) same as t(1, ✓, 1)

Dirichlet Dirichlet(a1, a2, a3) p(✓) = �(a1 + a2 + a3)/�(a1)�(a2)�(a3)

⇥ ✓a1�1
1 ✓a2�1

2 (1 � ✓1 � ✓2)
a3�1

⇥ I(0,1)(✓1)I(0,1)(✓2)I(0,1)(1 � ✓1 � ✓2)

3



Table 2: Means, Modes, and Variances.

Distribution Mean Mode Variance
Bern(✓) ✓ 0 if ✓ < .5 ✓(1 � ✓)

1 if ✓ > .5

Bin(n, ✓) n✓ integer closest to n✓ n✓(1 � ✓)

Beta(a, b) a/(a + b) (a � 1)/(a + b � 2) ab/(a + b)2(a + b + 1)

if a > 1, b � 1

U(a, b) .5(a + b) everything a to b (b � a)2/12

Pois(✓) ✓ integer closest to ✓ ✓

Exp(✓) 1/✓ 0 1/✓2

Gamma(a, b) a/b (a � 1)/b a/b2

if a > 1

�2(n) n n � 2 2n

if n > 2

Weib(↵, ✓) �[(↵ + 1)/↵]/✓ [(↵� 1)/↵]1/↵/✓ �[(↵ + 2)/↵] � µ2

N(✓, 1/⌧) ✓ ✓ 1/⌧

t(n, ✓, �) ✓ ✓ �2n/(n � 2)

if n � 2 if n � 3

Cauchy(✓) Undefined ✓ Undefined
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