Second Year Exam 2021

This is a closed book and notes examination. You are to answer exactly 5 of the following 6 questions. Use your time wisely. Clearly justify each step. The 5 questions you choose to answer will be worth equal credit. Please write only on one side of each page.

- 1. Let $(\Omega_i, \mathcal{F}_i, \mu_i)$, i = 1, 2 be two σ -finite measure spaces.
 - (a) Explain what σ -finite means, and give an example of a measure space that is not σ -finite.

(b) Let $\mathcal{G} \equiv \{A \times B : A \in \mathcal{F}_1, B \in \mathcal{F}_2\}$. Show that if $S \in \mathcal{G}$, then S^c can be expressed as a finite union of disjoint sets in \mathcal{G} .

(c) Describe what type of sets are included in the smallest field (not σ -field) that contains \mathcal{G} . Justify.

(d) Define μ_3 on \mathcal{G} (as in part(b)) by $\mu_3(A \times B) = \mu_1(A)\mu_2(B)$ for $A \in \mathcal{F}_1$ and $B \in \mathcal{F}_2$. Show that if $A \times B = \bigcup_{j=1}^{\infty} (A_j \times B_j)$ where $A, A_j \in \mathcal{F}_1$ and $B, B_j \in \mathcal{F}_2$, and $A_j \times B_j, j = 1, 2, \ldots$ are disjoint, then $\mu_3(A \times B) = \sum_{j=1}^{\infty} \mu_3(A_j \times B_j)$.

(e) Let \mathcal{F}_3 be the σ -field generated by \mathcal{G} (as in part (b)). Which theorem guarantees that μ_3 can be extended to \mathcal{F}_3 ? Explain.

2. Let X be a nonnegative random variable with distribution function F(x).

(a) Show that if $EX < \infty$ then $x(1 - F(x)) \to 0$ as $x \to \infty$. (Hint: express x(1 - F(x)) as the expected value of some random variable and justify taking the limit inside the expectation.)

(b) Let $\epsilon > 0$. Show that

$$\int_{1}^{\infty} (1 - F(\epsilon x)) dx \le \sum_{n=1}^{\infty} \Pr(X > n\epsilon) \le \int_{0}^{\infty} (1 - F(\epsilon x)) dx$$

(c) Use Fubini's Theorem to show that $\int_0^\infty (1 - F(\epsilon x)) dx = EX/\epsilon$.

(d) Suppose X_1, X_2, \ldots , are iid with distribution function F. Use parts (b) and (c) to show that if $EX < \infty$ then $X_n/n \to 0$ almost surely as $n \to \infty$.

- 3. Let $X_n \sim \text{Poisson}(\lambda)$ independently, n = 1, 2, ... Recall the Poisson PMF $\Pr(X_n = k) = \lambda^k e^{-\lambda}/k!$ for k = 0, 1, ..., where $\lambda > 0$. Define $S_n = \sum_{j=1}^n I(X_j = 0)$ and $T_n = \sum_{j=1}^n X_j$, where $I(\cdot)$ denotes the indicator function.
 - (a) Derive the characteristic function of S_n .
 - (b) Show that S_n/T_n tends to a constant in probability as $n \to \infty$. Identify this constant.
 - (c) Define $W_n = \sum_{j=1}^n j X_j$. Identify suitable constants $b_n > 0$ such that $W_n/b_n \to 1$ in probability. Justify.
 - (d) Define W_n as in part (c). Identify constants a_n, c_n such that $(W_n a_n)/c_n \xrightarrow{D} N(0, 1)$. Justify.
- 4. (a) Consider a random variable X defined as $X(\omega) = \omega$ for every $\omega \in [0, 1]$ equipped with Borel sigma field and Lebesgue measure. Let $Y = I(X < 1/3) + 2I(1/3 \le X < 2/3) + 3I(X \ge 2/3)$, and $Z = X^2$. What is the sigma field generated by Y? What is the sigma field generated by Z?
 - (b) Following part (a), find E(X | Y) and E(X | Z). Explain.
 - (c) Now consider a general situation. Suppose there is a random variable X defined on (Ω, \mathcal{F}) . Let $\mathcal{F}_1 \subset \mathcal{F}_2$ be two sub sigma-fields of \mathcal{F} and $\mathcal{F}_1 \neq \mathcal{F}_2$. Is it true that $E(E(X | \mathcal{F}_1) | \mathcal{F}_2) = E(E(X | \mathcal{F}_2) | \mathcal{F}_2) | \mathcal{F}_1)$? Explain or prove your answer.

- (d) Following (c), compare those two terms, $E(X E(X | \mathcal{F}_1))^2$ and $E(X E(X | \mathcal{F}_2))^2$, which one is larger? Explain or prove your answer.
- 5. Let $\theta > 0$ be a parameter of interest and let X follow a uniform distribution on $(0, \theta]$. For the entire problem, consider a loss function $L(\theta, \hat{\theta}) = |\theta \hat{\theta}|/\theta$ for an estimator $\hat{\theta}$.
 - (a) Consider an estimator T(X) = cX for some constant $c \ge 1$. Find the risk of T(X).
 - (b) Now find the value of c such that the risk of T(X) you obtained in part (a) is minimized. Denote the corresponding estimator by $\hat{\theta}$.
 - (c) Now the goal is to show that $\hat{\theta}$ is an extended Bayes estimator (limit of a sequence of Bayes estimators). Consider a Pareto distribution with parameter $x_m > 0, \alpha > 0$. Its pdf, expectation, and median are

$$f(x) = \frac{\alpha x_m^{\alpha}}{x^{\alpha+1}} I(x \ge x_m), \mathcal{E}(X) = \frac{\alpha x_m}{\alpha - 1} \text{ for } \alpha > 1, \text{median}(X) = x_m 2^{1/\alpha}.$$

Now show that $\hat{\theta}$ is an extended Bayes estimator under some Pareto priors.

- (d) Prove this result in general: if a Bayes rule has a constant risk (with respect to different parameter values), it must be a minimax rule.
- (e) Recall from our class: an extended Bayes rule that has a constant risk is also minimax (under some conditions). Use this result (you don't have to prove it) to show that θ̂ you obtained in part (b) is minimax.
- 6. Consider $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim}$ Uniform $[0, \theta]$. We know MLE is $X_{(n)} = \max\{X_1, \ldots, X_n\}$ in this case. Also define $X_{(1)} = \min\{X_1, \ldots, X_n\}$ and $\bar{X}_n = \sum_{i=1}^n X_i/n$.
 - (a) Find a sequence of numbers a_n such that $a_n(\theta X_{(n)})$ converges in distribution to some nondegenerating limit as $n \to \infty$.
 - (b) Let $T = \frac{n+1}{n}X_{(n)}$. Find a sequence of numbers b_n such that $b_n(\theta T)$ converges in distribution to some non-degenerating limit.
 - (c) Find the variance of T and show it does not satisfy the Cramér-Rao lower bound, i.e., $\left\{ nE_{\theta} \left(\frac{\partial l(X;\theta)}{\partial \theta} \right)^2 \right\}^{-1}$, where $l(X;\theta)$ is the log-likelihood function based on a single observation X.
 - (d) Explain why the Cramér-Rao lower bound does not hold in part (c).
 - (e) Compare $X_{(n)}$, $\frac{n+1}{n}X_{(n)}$, $2\bar{X}_n$, and $X_{(n)}+X_{(1)}$ as estimators for θ , which one is the best? Explain.