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2nd	Year	Theory	Exam	–	220A,	220B	

Department	of	Statistics,	UC	Irvine	Wednesday,	June	17,	
2020,	9:00	am	to	1:00	pm 

• This	is	a	closed	book	and	notes	examination.	You	are	to	answer	exactly	5	of	the	
following	6	questions.	Use	your	time	wisely.	Clearly	justify	each	step.	The	5	
questions	you	choose	to	answer	will	be	worth	equal	credit.		

• Your	solutions	to	each	problem	should	be	written	on	separate	sheets	of	paper.	Label	
each	sheet	with	your	student	identification	number,	the	problem	number,	and	the	
page	number	of	that	solution	written	in	the	upper	right	hand	corner.	For	example,	
the	labeling	on	a	page	may	be:		

ID#	912346378		
Problem	2,	page	3		

• You	have	4	hours	to	complete	your	solution.	Please	be	prepared	to	turn	in	your	
exam	at	1:00pm.		

 



Second Year Exam
2020

This is a closed book and notes examination. You are to answer exactly 5 of the following 6 questions. Use
your time wisely. Clearly justify each step. The 5 questions you choose to answer will be worth equal credit.
Please write only on one side of each page.

1. For a nonnegative random variable X, define its Laplace transform as  X(t) = Ee
�tX .

(a) Show that  X(t) exists and is continuous in t 2 [0,1) for any random variable X � 0.

(b) Suppose X � 0 and let F (x) = P (X  x). Prove the formula  X(t) =
R1
0 te

�tx
F (x)dx for t > 0.

(c) Let Xn, n = 1, 2, . . . be a sequence of nonnegative random variables such that Xn
D! X. Show that

 Xn(t) !  X(t) for every t � 0.

(d) It is known that if two nonnegative random variables have the same Laplace transform, then they
have the same distribution. Use this to establish the following result. Let Uk, k = 1, 2, . . . , n, be
independent Uniform(0, 1) random variables. Then

Pn
k=1 Uk has Lebesgue density

f(x) =
1

(n� 1)!

nX

k=0

(�1)k
✓
n

k

◆
(x� k)n�1

I(x � k),

where I(·) is the indicator function.

2. Let Xn ⇠ Expo(�n) independently where the exponential distribution has Lebesgue density fn(x) =
�ne

��nx for x � 0.

(a) Give necessary and su�cient conditions on �n such that Xn ! 0 in probability. Justify.

(b) Give necessary and su�cient conditions on �n such that Xn ! 0 almost surely. Justify.

(c) Suppose �n = n. Identify constants bn > 0 such that
Pn

j=1 Xj/bn ! 1 in probability. Justify.

(d) Suppose �n = 1/n. Identify constants an and bn > 0 such that (
Pn

j=1 Xj � an)/bn
D! N(0, 1).

Justify.

3. Uniform integrability

Consider a sequence of non-negative random variables Xn defined on a probability space (⌦,A, P ).
We say {Xn} is uniformly integrable (u.i.) if supn E{XnI{Xn > C}} ! 0 as C ! 1.

(a) Prove a su�cient condition for u.i.: if supn EX
1+�
n < 1 for some � > 0, then {Xn} is u.i.

(b) Prove an equilvalent definition of u.i.: (a) supn EXn < 1; and (b) for any ✏ > 0, there exists
� > 0 such that for every measurable set A with P (A)  �, then E(XnI(A))  ✏ for every n.

(c) Now prove this result: if Xn
p! X as n ! 1 and {Xn} is u.i., then Xn

L1! X.

(d) Is the converse of part (c) true? If yes, prove it; if not, give a counter-example and explain.

(e) Consider an example where Xn satisfies P (Xn = 0) = 1 � n
�k and P (Xn = n) = n

�k. What is

the requirement on k to have Xn
p! 0? What is the requirement on k to have Xn

L1! 0? What
happens in between?
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4. Decision theory

Let ✓ be a parameter that only takes two values, ✓1 and ✓2. Consider a class of decision rulesD = {d(↵) :
↵ 2 [0, 2⇡]}. For d(↵), its risk function R(·, ·) satisfies R(d(↵), ✓1) = 4 + cos↵, R(d(↵), ✓2) = 2 + sin↵.

(a) Draw a picture for the risk set spanned by D. Identify the class of admissible rules and explain
why.

(b) Find the minimax rule and its risk function.

(c) Consider a prior on ✓, i.e., ⇡(✓1) = p,⇡(✓2) = 1 � p for some p 2 [0, 1]. Find the Bayes rule and
its Bayes risk.

(d) Now consider a randomized rule based on the class D, i.e., d =
PK

i=1 wid(↵i), where w1, . . . , wK >

0,
PK

i=1 wi = 1, 0  ↵1 < · · · < ↵K  2⇡ for a finite integer K > 1. Is it possible for d to be
admissible? If yes, give an example and explain. If not, prove it.

(e) Now redo part (d) by letting K = 1. In other words, consider a randomized rule, d
⇤ =P1

i=1 wid(↵i), where w1, w2, . . . > 0,
P1

i=1 wi = 1, 0  ↵1 < ↵2 < · · ·  2⇡. Is it possible
for d⇤ to be admissible? If yes, give an example and explain. If not, prove it.

5. Let X be a random variable with density function f(x; ✓), x 2 R, ✓ 2 ⇥ ⇢ R. For any two values
⌘, 2 ⇥, the Kullback-Leibler divergence (KLD) is defined as follows:

D(⌘, ) = E log

⇢
f(x; )

f(x; ⌘)

�
=

Z

R
log

⇢
f(x; )

f(x; ⌘)

�
f(x; )dx,

where E denotes the expectation taken under the density of f(x; ). It is known that D(⌘, ) � 0
and D(⌘, ) = 0 if and only if f(x, ⌘) = f(x, ), a.s.

Let X1, . . . , Xn be an independent and identically distributed sample drawn from f(x; ✓). To test
the hypothesis H0 : ✓ = ✓0 versus H1 : ✓ = ✓1, we apply the likelihood ratio test approach. The
log-likelihood ratio statistic is given by

LR(X) = logL(X, ✓0, ✓1) = log
nY

i=1

f(Xi; ✓1)

f(Xi; ✓0)
=

nX

i=1

`(Xi),

where `(Xi) = log{f(Xi; ✓1)/f(Xi; ✓0)}. Let µ0 = E✓0`(X), µ1 = E✓1`(X), and �2
0 = V ar✓0(`(X)) <

1, �2
1 = V ar✓1(`(X)) < 1.

(a) Let u(x; ✓) be the score function of a single observation, i.e. u(x; ✓) = @ log f(x; ✓)/@✓. Consider
a neighborhood of parameter ✓0, N0 ⇢ ⇥. Show that

E✓1u(X; ✓0) = I(✓0)(✓1 � ✓0)(1 + o(1)), ✓1 2 N0,

where I(✓0) < 1 is the Fisher Information of a single observation under H0, and o(1) is in the
sense of |✓1 � ✓0| ! 0.

(b) Let D(✓0, ✓1) be the KLD of a single observation. Assume that the Fisher information I(✓) is
continuous in ✓ 2 N0. Using the result in Part (a) show that

D(✓0, ✓1) =
1

2
I(✓0)(✓1 � ✓0)

2{1 + o(1)}, ✓1 2 N0.

(c) Using the asymptotic normality of LR(X), construct a size ↵ Neyman-Pearson (N-P) test for
H0 : ✓ = ✓0 versus (a local alternative) H1 : ✓ = ✓0 + �/n

�, where both � and � > 0 are given
constants.
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(d) Give a range of � over which the N-P test given in Part (c) is consistent, namely its power increases
to 1 when the sample size n ! 1.

6. Suppose that X1, . . . , Xn are i.i.d. with distribution function F and continuous density function f > 0.
Let Fn be the empirical distribution function of the Xi’s, in other words, Fn(x) = (1/n)

Pn
i=1 I(Xi 

x), where I(·) is an indicator function. For a sequence of positive numbers bn, define a uniform kernel
density estimator of f by

f̂n(x) =
Fn(x+ bn)� Fn(x� bn)

2bn
.

(a) Show that E
⇣
f̂n(x)

⌘
! f(x) if bn ! 0.

(b) Show that V ar

⇣
f̂n(x)

⌘
! 0 if bn ! 0 and nbn ! 1.

(c) Show that if bn ! 0 and nbn ! 1,

p
2nbn

n
f̂n(x)� E

⇣
f̂n(x)

⌘o
!d N(0, f(x)),

where !d means convergence in distribution.

(d) Now consider x, y 2 R, the set of real numbers, with x 6= y. Under the same assumptions in (c),
show that

p
2nbn

✓
f̂n(x)� Ef̂n(x)

f̂n(y)� Ef̂n(y)

◆
!d “something”

and find “something”.
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