Second Year Exam - Part I (Theory)
2018

This is a closed book and notes examination. You are to answer exactly & of the following 6 questions. Use
your time wisely. Clearly justify each step. The & questions you choose to answer will be worth equal credit.
Please write only on one side of each page.

1. Let F(z) = 0.5I(z > 0) +0.5I(z > 1) — 0.5¢"®I(x > 0) where I is the indicator function. Let
u((a, b)) = F(b) — F(a) for —co < a < b < 0.
(a) Which properties of the function F' ensure that p is a probability measure? Verify these properties.
(b) Use Fubini’s theorem to prove that for a nonnegative random variable X with distribution function
G we have EX = [[°(1 - G(z))dx
(c) Use part (b) to compute the expected value of a random variable whose distribution function is
given by F.
(d) Is p absolutely continuous with respect to Lebesgue measure? Is Lebesgue measure absolutely
continuous with respect to p? Justify.




2. Letz;, j =1,2,..., be constants such that z; € [L,U] where 0 < L < U < co. Let Y; = fz;+¢; where
¢; are independent identically distributed random variables with mean 0 and variance % € (0, 00).

(a) Denote the least squares estimator by § = Sy Y/ >0y 3. Show that f converges to § in
mean squared as n — co.

(b) Show that § in part (a) is asymptotically normal by verifying Lindeberg’s condition.

(c) An alternative estimator of § is § = > i1 Y5/ >i—  ¢j. Show that this estimator also converges
to f in mean squared but for every n it has a variance at least as large as that of 3.

(d) In this part assume z; are i.i.d. random variables bounded between L and U (rather than constants).
Show that the least squares estimator 3 converges to 8 almost surely.




3. (a) Employing characteristic functions, show that if A > 0 is a constant and X, has a binomial(n, A/n)

distribution then X, 2 Po(\) as n — co. Note that the Po()) distribution has pmf Abe=> /k! for
k=0,1,... and its mean and variance are both A.

(b) Give an example of a sequence of random variables X, such that X,, — Po()\) in distribution
(A € (0,00)) but EX,, does not converge to \.

(c) Prove that nP(X > n) — 0 as n — oo if X is a random variable with F'max{X,0} < oco.

(d) Give an example of a real-valued random variable X such that nP(X > n) does not tend to zero
as n — oo.




4. Subindependence

Consider two random variables X and Y, and define their characteristic functions (CF) by ¢x (¢) and
¢v (t), respectively. We say X and Y are subindependent if

dx+v(t) = ox(t)py (1),

in other words, CF of X +Y equals to the product of CFs of X and Y.

(a)

(b)
()

It is clear that independence implies subindependence. However, subindependence does not nec-
essarily imply independence. Let X follow the standard Cauchy distribution, with CF ¢x (¢) =
exp(—|t|). Show that X and ¥ = X (itself) are subindependent but not independent.

Still let X follow the standard Cauchy distribution. Show that X and —X are not subindependent.

Recall by taking the derivatives of CF, one can obtain the moments of a random variable. In
particular, if the k-th moment of X exists, then

£ Oox(t)
otk

Use this fact to show that subindependence implies no correlation, i.e., if X and Y are subinde-
pendent, then Cov(X,Y) = 0 (assuming the second moments of X and Y exist. Hint: consider
E(X +Y)?%).

Independence plays a key role in statistics and probability. For example, CLT may not neces-

E(X*) = (—i) lizo, k=1,2,...

sarily hold without the independence assumption. Now consider Xi,...,X, being identically
distributed. If we don’t assume independence, then we can choose X = S for odd number k
and Xy = —S for even number k, where S follows some symmetric distribution with mean 0 and

variance 1. Show that
n
ZaXin,
Vn
In other words, CLT does not hold here.

Now explain intuitively, why CLT may still be valid if we replace the independence assumption
by subindependence.



5. Decision theory

Suppose that we have a single observation X from a Bernoulli distribution with success probability
parameter 6. Let 6 only take two possible values, {0.3,0.6}. For any estimator §, define a loss function
as L(0,6) =1(0 # 4).

(a)

(b)

(d)

(e)
(f)

Consider three estimators,
01(X) =0.3, 62(X) =06, 63(X)=03[(X=0)+06(X=1).
Show that their risks are:

R(0,61) =1(6 = 0.6), R(6,5,) =1(0=0.3),
R(8,65) = 0.31(6 = 0.3) + 0.41(0 = .6).

Since the parameter space is discrete with just two points, we can plot the risk vector (R(6 =
0.3,6), R(6 = 0.6,0)) of the estimator 6 and form a risk set. Note that in our case, the risk set is
the triangle area with nodes (0,1), (1,0), (0.3,0.4). Explain why the risk set is always a convex
set.

Mark all the admissible estimators on the plot of the risk set.

Find a prior distribution such that the corresponding Bayes estimator is not unique. Explain. (I
will need the mathematical expression for the prior distribution, marking on the plot is not good
enough.)

Show that the minimax estimator has the risk vector of ( —14—1, %) Is it a Bayes estimator?

Prove this result in general (not under the specific setting of this problem, but for general cases):
if a minimax estimator is unique, then it is admissible. Then use this result to determine if the
minimax estimator you find in part (e) is admissible.

Now prove this result in general, if the parameter space is finite, i.e., © = {61, ...,0k}, and a prior
7 is positive on ©. Then the Bayes estimator under 7 is admissible. Explain why the condition
7 being positive is required.



6. MLE

Consider i.i.d. observations X7,..., X, from some distribution with density function fg(x) indexed by
a parameter 0 € © C R. Consider an M-estimator 6,, that maximizes a function of type

Mo(6) = = 3 Un(X0),

where Uy is a known function of X. For example, one can choose Uy(z) = log f(x) and then obtain
the MLE as the maximizer of M, (6).

(a)

(b)
(©)
(d)
(e)

What are the M-estimators for the choice of Up(z) = —(z — #)? and —|z — 6|7 What about
Up(z) = —(1 —p)(z —0)" —p(z — 6)T for 0 < p < 1? Explain.

Here is a theorem (Theorem 5.7 from “Asymptotic Statistics”) that is useful for proving consis-
tency of MLE.

Theorem: Let M, be random functions and let M be a fixed function of # such that for every
€ > 0,

xmew—Mwnﬁa (1)
sup  M(0) < M(6p). (2)
0:]60—00|>¢

Then any sequence of estimators ,, with M, (6,) > M, (6y) — op(1) converges in probability to
bo.

The following questions are based on this theorem.

Write down the definition of 0,(1), and prove op(1) + 0,(1) = 0p(1) (you can use any theorems
we have discussed in the class).

Prove the Theorem. (Hint: first show M (6y) — M (6,,) < 0,(1), then combine this with condition
(2).)

For condition (1), explain why the uniform convergence “suppceo” is needed based on part (c).
Can we obtain (1) by law of large numbers? Explain.

Give an example of M where (2) is not satisfied (drawing a picture of M will be good enough).
Assuming © is a closed interval, and M : © — R is a continuous function. Show that if 6y is
the unique global maximum of M, then (2) holds. Discuss how you would relax the continuity
assumption of M.




