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(Don’t) Tell Me Another One

e Holds the record of 40 hours
and 8 minutes for the longest
stand-up comedy show by an
individual, at the Diamond Jo
Casino in Dubuque, lowa, in
late April 2013

i X e He was allowed only a 5
DaVid SCOtE ¥ minute break each hour, was
required not to repeat any
joke within a 4 hour period,
and needed to have at least
10 people in the audience at
all times.




(Don’t) Tell Me Another One

e Holds the record of 40 hours
and 8 minutes for the longest
stand-up comedy show by an
individual, at the Diamond Jo
Casino in Dubuque, lowa, in
late April 2013

i X e He was allowed only a 5
DaVid SCOTE ¥ minute break each hour, was
required not to repeat any
e One burning question for joke within a 4 hour period,
cognitive science is “when do and needed to have at least
people give up listening to 10 people in the audience at

jokes?” all times.



Jester On-Line Joke System

e Distribution of jokes read by 2607 people, at a time when the
system had 70 jokes (Goldberg et al, 2001)
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A Censored Geometric Model

e Suppose people have some probability of quitting after each
joke, and the measurement of this geometric distribution is
censored by the on-line joke system only having 70 jokes

g ~ Unifﬂrm((], 1)

o ~ 15+ Genmetric(éi)

o; ifa; <70

YM'=170 ifa; > 70



A Censored Geometric Model

e Suppose people have some probability of quitting after each
joke, and the measurement of this geometric distribution is
censored by the on-line joke system only having 70 jokes

§ ~ Uniform(0, 1) model{
theta ~ dunif(0,1)

for (1 1n 1:nPeople){

a; ~ 15 + Geometric(6) alpha[i] ~ dnegbin(theta,l)
# b is [1,2 70]
a; ifa; <70 v[1] ~ dinterval(alpha[i1],b)

Vi }

~ 170 ifo; > 70 y




Posterior Predictive Agreement

e This simple model is descriptively adequate, with a termination
probability around 3% for each person on each joke
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An Extended Model with Individual Differences

e Two sorts of individual differences

— people can have different — some people just always
termination probabilities have to read all the jokes
n ~ Uniform((), 1) ¢ ~ Uniform((), 1)
g ~ Ijlll'lf‘.?l]_'lll(Oj l) i~ Bemou]]l(q’))
1

6; ~ Gaussian, 1 (4, 07)

15 4+ Geometric (6;) if z; = 0and o; < 70
yi ~ 1 70 ifz; =0and o; > 70
70 if {] — 1.



Are There Individual Differences?
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Bayesian Statistics and Cognitive Science



Bayesian methods

e Bayesian methods let you infer parameters, evaluate models,
and understand and make predictions about data

e Three types of application in psychology



Bayesian methods

e Bayesian methods let you infer parameters, evaluate models,
and understand and make predictions about data

e Three types of application in psychology

— Bayes in the head: Use Bayes as a theoretical metaphor,
assuming that when people make inferences they apply
Bayesian methods (at some level)
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Bayesian methods

e Bayesian methods let you infer parameters, evaluate models,
and understand and make predictions about data

e Three types of application in psychology
— Bayes in the head

— Bayes for data analysis: Instead of using frequentist
estimation, confidence intervals, null hypothesis testing,
and so on, use Bayesian inference to analyze data
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Bayesian methods

e Bayesian methods let you infer parameters, evaluate models,
and understand and make predictions about data

e Three types of application in psychology
— Bayes in the head
— Bayes for data analysis

— Bayes for cognitive modeling: Use Bayesian inference to
relate models of psychological processes to behavioral data
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Eric-Jan Wagenmakers
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Cognitive Models as Generative Statistical Models

e Most cognitive models can be thought of as data generating

processes, combining

— Psychological processes, formalized by the likelihood

— Psychological variables,

parameters

data

formalized by parameters
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Attraction of Bayesian methods

e Beyond the conceptual coherence and completeness, the great
advantage of Bayesian methods is they allow cognitive that are
more complicated than the standard one to be considered

parameters
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Hierarchical modeling

e Hierarchical models extend the standard approach by including
a modeling account of how the basic model parameters

themselves are generated

Hierarchical
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Latent-mixture modeling

e Latent-mixture models extend the standard approach by
allowing behavioral data to be generated as a mixture of
multiple different processes and controlling parameters

Latent Mixture
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Common-cause modeling
e Common-cause models extend the standard approach by

allowing the same psychological variables to influence multiple
sorts of observed behavior

Common Cause
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Wisdom of the Crowd for Ranking Data
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Generative Cognitive Modeling Approach

e Use cognitive models of the processes that generate data, and
the individual differences across people, as the bridge between
the available data and the latent group knowledge

Latent knowledge

Cognitive
processes

Behavioral
data



Thurstone (1927) Model for Partial Lists
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Thurstone (1927) Model for Partial Lists
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Observed Ranking

Y, = (11 21 3: 5)

L] L2 L31 L51 T4
Observed Ranking

Yo = (11 31 2)

12 T'32L22 L42 €52



Graphical Model

e Implement the Thurstonian model as a graphical model in
JAGS, inferring two sorts of psychological parameters

— |latent item locations

— expertise of each person

Uniﬂ)rm([l, 1
Uniﬂ)rm([l, 1
Gaussian (p;, l/ﬂ';j)

Rank(z;;)

O

ij
Yij

Woile)

Yij

L 1ems) Items j 1:7'9[3'13}19;4




Movie Inferences

e Order movies in terms of expected posterior of their inferred
item location

Model Inferences Observed Data

———a——
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Man of Steel
Iron Man 3
The Hobbit: The Desolation of Smaug
Star Trek Into Darkness
Thor: The Dark World
The Wolverine
Pacific Rim
The Hunger Games: Catching Fire
Oz: The Great and Powerful
The Lone Ranger
World War Z
G.l. Joe: Retaliation
Monsters University
47 Ronin
A Good Day to Die Hard
Ender's Game
Despicable Me 2
Furious 6
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Movie Inferences

Model Inferences

——
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Man of Steel
Iron Man 3
The Hobbit: The Desolation of Smaug
Star Trek Into Darkness
Thor: The Dark World
The Wolverine
Pacific Rim
The Hunger Games: Catching Fire
Oz: The Great and Powerful
The Lone Ranger
World War Z
G.l. Joe: Retaliation
Monsters University
47 Ronin
A Good Day to Die Hard
Ender's Game
Despicable Me 2
Furious 6
The Hangover Part 11l
Elysium
Kick-Ass 2
Oblivion
Evil Dead
Gangster Squad
Jack the Giant Slayer
After Earth
R.L.P.D.
Carrie
Grown Ups 2
Scary Movie 5
Hansel & Gretel: Witch Hunters
The Host
The Croods
The Great Gatsby
Now You See Me
Percy Jackson: Sea of Monsters
Anchorman 2: The Legend Continues
Gravity
Warm Bodies
Captain Phillips
Side Effects
Dark Skies
The Wolf of Wall Street
The Purge
Only God Forgives
Pieta
Upstream Color
Filth
The Conjuring
Simon Killer

Observed Data
&
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Movie Performance

e We used ground truth box office takings from imdb.com, and
partial tau to measure how well individuals, the model, and the

Borda count statistical method performed

Movie Popularity 3 [ r=0.72
59 Items = ey 8° e
28 People g :, .
(v
Expertise

%
ThurSBHE, Ak SRk
Partial Tau

Best possible
possibie,



Movie Performance

e Both the model and Borda count make very good predictions,
and are better than even the best individual

e The model also provides a good prediction of relative expertise

Movie Popularity 3
59 ltems =
28 People /N =
/I \ *
/ \ Expertise
/ \
/ \
/ \
/ \
7 / \
Best pnssibl:—:é Thurs%ﬁjea y V. s A A .

Partial Tau
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List Criteria: Only teams participating in the 2014 World Cup
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Who Will Win the 2014 World Cup

List Criteria: Only teams participating in the 2014 World Cup

A list of what country will win the 2014 World Cup. It is the most watched event in the wor
top 32 countries from across the globe will descend upon Brazil to compete for what's col
trophies in the world. The best footballing countries in the world aim to leave Brazil with th
winners, bringing prestige and honor to their respective countries, and coming home as c
it won't be going anywhere).
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Modeling Ranking and Voting Data

Extend the Thurstone model of rank data generation to include
a transfer function mapping latent item location to up-voting

Latent Ground Truth
T T2 T3
Voting Data Ranking Data

1 Person 1
£08 é i § E
=
-8 0.6
o 1 Vo1 P31
o
g 04 Person 2
= N
> 02 NN

L
s e i
0 . 2 P12 92 P30

0 02 04 06 08 1
Latent Location



Bracket Prior Information

e The bracket for the World Cup is highly relevant prior
information, which is natural for Bayesian analysis

2014 FIFA WORLD CUP GROUPS

GROUP A GROUP B GROUP C GROUP D
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4 Jf | CAMEROON 4 g5 AUSTRALIA 4 @ |JAPAN 4 | BTy
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2 mi ECUADOR 2 [\ BosNnIAS HERZ. 2 (3} PORTUGAL 2 | |ALGERIA

3] B FRANCE 3 o IRAN 3 mtem GHANA 3 g RUSSIA

4 — HONDURAS 4 | B NIGERIA 4 E= usa 4 (e} KOREA REP.



Combining All Relevant Information

e Graphical model combines ranking data, voting data, and

bracket structure prior information

Yij

jJ rankers)

7 teams J

Yij
Qv
0;

Vg

5B Gaussian(0, 0.001)
.~ Uniform(0, 20)

—2

. ~ Gaussian(u;, 0;°)

— Rank ()
~ Gaussian(0, 0.01)
— 1/ (1 +exp{—ap;})

~ Binomial(0;, n;)
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Model World Cup Predictions
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World Cup Performance

e Combining all the information makes a better prediction than
all people, and various betting and prediction sites

- | r=-0.09
LA
Bracket = ¢ @
) R
\ L | ee ee e
/ \ * 20 "*
/ \ Expertise
/
’ \
/ \
/ \
Betfaib \
Ran Vote \
Borda, Fivethirtyeight® Rank vote
Rank and bracketcf \
\
Rank vote bracket K K A Z N
Best possible - O Rk RAKA K ~
— [ro—

Partial Tau



Detecting Step Changes in Cognition



Detecting Step Change

e Lots of cognitive phenomena and observed behaviors change

suddenly

— Large statistical literature on inferring how many changes
there are, and where they occur (Barry & Hartigan 1993,
Chib 1998, Fearnhead 2006, Adams and Mackay 2007)
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A Graphical Model of Detecting Change

e Key is the spike-and-slab prior on the (ordered) change points

— half the prior mass to “no change”

— other half distributed equally over meaningful possibilities
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Demonstration With Toy Data

Take the posterior mode as point estimate of change points,
and infer rates conditional on those points

ltem A ltem B ltem C
1 17 17
EAERRN
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D IIIIIIIIIIIIIIIIIIIIII ' IIIIIIIIII |
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Proportion Use

Lindisfarne Scribes Problem

Looks at the proportion of use of forms like “drives” vs
“driveth” in 13 ordered gospels, as a basis for inferring changes
in the scribes

Our inferences match the analytic ones of Smith (1975)
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Category Learning Performance

e Cognitive science is interested in whether people learn categories

Proportion Correct

1.0 1
0.8 1
0.6 1
0.4 1

0.2 1
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— Incrementally, by fine-tuning associations
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Latent-Mixture Model of Category Learning Performance

e Allow for two different learning models

— a linear increase starting at chance and with a threshold at
perfect accuracy

— some number of sudden upward jumps, using change point

model
s “\
T B ~ Uuifm'm((]u ])
P \ 83, ~ U niﬂ';rm((]u (}.5)
w;; z; ~ Bernoulli ((}.5)
1 thimes
"o 1 1
= /. i ~ Categorical : e 7 < < T
2 > i : o s E'(Eﬂ—l 2n—1 2”_1).*1_ =

u1.l'_j = ZLI (J :_} TJ'F-';I

tij Biumuiﬂl(ﬁ*;,u;uJ-,-_f-) it z =1
tij ™~

. | J times i items; Binomial (max [1, 3; x j + 0.5] ,£;;) if 2 =10




Results

e Find evidence for individual differences, with both incremental
and step-change learning

Proportion Correct

— can infer learning curves, and Bayes factors
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ranker.com NFL 2016-2017 MVP Votes

e List created in November 2016, and received 31,907 votes for 27
different players, up until Matt Ryan won on February 4, 2017

&4 SEELIST RANKED BY WOMEN MEN AGE REGION S RERANES
¢ £ @ z
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2 s . Dak Prescott
age 22
3 S Tom Brady
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Hierarchical Extension

e The rates within a stage come from an overarching Gaussian

— assumed the variance is the same for all stages, coming
from the different people in the crowd day-to-day
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Current Opinion

e At the time of voting, Matt Ryan has the best up-vote proportion,
ahead of Tom Brady
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Cumulative Opinion

e Ezekiel Elliott had the greatest proportion of up-votes overall
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Summary



Bayesian Benefits for Cognitive Modeling

e Bayesian methods allow theorists to develop, evaluate, and use
richer generative models of how psychological variables and
processes generate behavior

e Bayesian methods afford theoretical freedom with rigorous
assessment and flexible inferences
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