Written Comprehensive Examination - Theory Department of Statistics, UC Irvine Friday, June 16, 2023, 9:00 am to 1:00 pm

- There are 7 questions on the examination. Select any 5 of them to solve. If you attempt to solve more than 5 questions, you are only to turn in the 5 you want graded. If you turn in partial solutions to more than 5 questions, only 5 will be graded.
- Each of the 5 problems you attempt to solve will be worth equal credit, with each accounting for 20% of your final score on this examination.
- Your solutions to each problem should be written on separate sheets of paper one side only with the backside left blank. Label each sheet with your identifier number emailed to you by the Department Manager Laura Swendson, the problem number, and the page number of that solution written in the upper right hand corner. For example, the labeling on a page may be:

Problem 2, page 3

- You have 4 hours to complete your solution. Please be prepared to turn in your exam at $1: 00 \mathrm{pm}$.

1. Let X and Y be independent random variables with $X \sim \operatorname{Exp}(\lambda)$ and $Y \sim \operatorname{Exp}(\mu)$. Define random variables Z and W such that $Z=\min \{X, Y\}$ and $W=1$ if $X \leq Y$ and $W=0$ if $X>Y$.
(a) Compute $\operatorname{Pr}(W=1)$ by using double integrals.
(b) Compute $\operatorname{Pr}(Z \leq z)$ where $z>0$ is a constant. Identify the marginal distribution of Z by name and parameter.
(c) Compute the joint probability $\operatorname{Pr}(Z \leq z, W=1)$ where $z>0$ is a constant. Do the same for $\operatorname{Pr}(Z \leq z, W=0)$.
(d) Show that W and Z are independent.

(End of Problem 1)

2. The joint pdf of (X, Y) is

$$
f(x, y)=\frac{\lambda}{\sqrt{2 \pi}} \exp \left\{-\frac{(y-\theta x)^{2}}{2}-\lambda x\right\}, \quad x>0,-\infty<y<\infty .
$$

where $\lambda>0$ and $\theta \in(-\infty, \infty)$ are parameters.
(a) Find the marginal pdf of X and identify this well known distribution by name and parameter.
(b) Find the conditional mean and variance of Y given X.
(c) Suppose we observe $\left(X_{j}, Y_{j}\right), j=1, \ldots, n$, iid (independent and identically distributed) with this joint distribution. Identify a three-dimensional sufficient statistic for (θ, λ).
(d) In the setting of part (c) derive the maximum likelihood estimator of (θ, λ).
(End of Problem 2)
3. Suppose $X_{j} \sim \operatorname{Exp}(\lambda)$ and $Y_{j} \mid X_{j} \sim \operatorname{Poisson}\left(\theta X_{j}\right)$, independently for $j=1, \ldots, n$. The parameters λ and θ are both positive.
(a) Compute Fisher's expected information for (λ, θ) based on the n bivariate samples $\left(X_{j}, Y_{j}\right), j=$ $1, \ldots, n$. (Hint: this is a 2×2 matrix.)
(b) Show that the estimator $\tilde{\theta} \equiv \sum_{j=1}^{n} Y_{j} / \sum_{j=1}^{n} X_{j}$ is consistent for θ.
(c) Is the estimator $\tilde{\theta}$ in part (b) unbiased for θ ? Explain.
(d) Is the estimator $\tilde{\theta}$ in part (b) asymptotically normal for θ ? Justify.
(e) Describe how you may obtain an approximate 95% confidence interval for θ, valid for large n.

(End of Problem 3)

4. Suppose $Y_{j} \mid\left(\mu_{0}, \sigma^{2}\right) \sim \mathrm{N}\left(\mu_{0}, \sigma^{2}\right)$ independently for $j=1, \ldots, n$. Assume μ_{0} is known and $\sigma^{2}>0$ is the only unknown parameter.
(a) Derive the likelihood ratio test for testing $H_{0}: \sigma^{2}=\sigma_{0}^{2}$ vs $H_{1}: \sigma^{2} \neq \sigma_{0}^{2}$ where $\sigma_{0}^{2}>0$ is a constant. Explain how you determine the rejection region to achieve level $\alpha=0.05$ based on the exact distribution of your test statistic.
(b) Derive a 95% confidence interval for σ^{2} based on the statistic $T \equiv \sum_{j=1}^{n}\left(Y_{j}-\mu_{0}\right)^{2}$.
(c) Consider a Bayesian approach under the prior $p\left(\sigma^{2}\right) \propto 1 / \sigma^{2}$. Derive the posterior density of σ^{2} and that of $\delta \equiv 1 / \sigma^{2}$. Express the (unnormalized) posterior density of δ in the form of $\delta^{U-1} e^{-\delta V}$ and specify the statistics U and V.
(d) In the setting of part (c), describe how you may find a 95% highest probability density (HPD) posterior credible interval for δ. (You may use the form of the posterior density of δ in part (c) even if you did not complete part (c).)
(e) In the setting of part (c), find the Bayes estimator of $\delta \equiv 1 / \sigma^{2}$ under squared error loss. (You may use the form of the posterior density of δ in part (c) even if you did not complete part (c).)

(End of Problem 4)

5. Consider the two-way model

$$
Y_{i j}=\mu+\alpha_{i}+\beta_{j}+\epsilon_{i j}
$$

where $i=1,2 ; j=1,2$ and $\epsilon_{i j} \stackrel{i i d}{\sim}\left(0, \sigma^{2}\right)$. Note that there is only one observation per cell.
(a) Express the model in the matrix form

$$
\mathbf{Y}=\mathbf{X}\left(\begin{array}{c}
\mu \\
\alpha_{1} \\
\alpha_{2} \\
\beta_{1} \\
\beta_{2}
\end{array}\right)+\epsilon
$$

Note that $\operatorname{rank}(X)=3$ (you do not need to show this part).
(b) Show that μ is NOT estimable.
(c) Consider $m \mu+a_{1} \alpha_{1}+a_{2} \alpha_{2}+b_{1} \beta_{1}+b_{2} \beta_{2}$. Assuming that this linear function is estimable, prove that m, the $a_{i}^{\prime} s$, and the $b_{j}^{\prime} s$ must satisfy $m=a_{1}+a_{2}=b_{1}+b_{2}$.
(d) State the Gauss-Markov theorem.
(e) Suppose that we are interested in estimating $2 \mu+\alpha_{1}+\alpha_{2}+1.5 \beta_{1}+0.5 \beta_{2}$. To use Gauss-Markov theorem to find its BLUE, we need to find least-square estimates (LSE) of the parameters. Follow the instructions below to find LSE of $\left(\mu, \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}\right)$. Then find the BLUE of $2 \mu+\alpha_{1}+\alpha_{2}+1.5 \beta_{1}+0.5 \beta_{2}$.
i. Parameterize the model using parameters $\mu, \alpha_{1}, \alpha_{2}, \beta_{1}-\beta_{2}, \beta_{1}+\beta_{2}$ then find the corresponding design matrix, which is denoted by \tilde{X}.
ii. Note that the rank of the design matrix \tilde{X} is also 3 . To find an LSE of ($\mu, \alpha_{1}, \alpha_{2}, \beta_{1}-$ $\beta_{2}, \beta_{1}+\beta_{2}$), we can use a "subset" method by deleting the first and the last columns. In other words, we set $\hat{\mu}=0, \hat{\beta}_{1}+\hat{\beta}_{2}=0$ and find LSE of $\alpha_{1}, \alpha_{2}, \beta_{1}-\beta_{2}$. This sounds complicated but you will notice that the three remaining columns are orthogonal with each other.

(End of Problem 5)

6. Segmented regression is a special type of regression in which an explanatory variable is partitioned into intervals and a separate line segment is fitted to each interval. Consider a twosegment linear model. This can be formulated as a linear model with a known "breakpoint", denoted by x_{0}.

$$
Y_{i}= \begin{cases}\alpha_{2}+\beta_{2} x_{i}+\epsilon_{i} & \text { if } x_{i}>x_{0} \\ \alpha_{1}+\beta_{1} x_{i}+\epsilon_{i} & \text { if } x_{i} \leq x_{0}\end{cases}
$$

where $i=1, \cdots, n$ and $\epsilon_{1}, \cdots, \epsilon_{n} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$. Without loss of generality (also for convenience), we assume that $x_{1} \leq x_{0}, \cdots, x_{m} \leq x_{0}, x_{m+1}>x_{0}, \cdots, x_{n}>x_{0}$.
(a) Rewrite the model in the form $Y=X \theta+\epsilon$, where X is the $n \times 4$ design matrix and $\theta=\left(\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\right)^{T}$. Specify the design matrix as explicitly as possible.
(b) Examine the design matrix X and the matrix $X^{T} X$. Explain why the least squares estimate of θ is equivalent to fitting two separate regression lines for the first m and the remaining $n-m$ points separately.
(c) Let $R S S_{\text {full }}$ denote the residual sum of squares for the two-segment linear regression. Derive the distribution of $R S S_{\text {full }} / \sigma^{2}$.
(d) Based on the model above, $E\left(Y \mid x_{0}\right)=\alpha_{1}+\beta_{1} x_{0}$ but $E\left(Y \mid x_{0}^{+}\right)=\alpha_{2}+\beta_{2} x_{0}$ where $E\left(Y \mid x_{0}^{+}\right)$is the limit of $E(Y \mid x)$ as x approaches x_{0} from the right. Therefore, the mean response curve $E(Y \mid x)$ is not necessarily continuous at x_{0}. We would like to test whether this curve is continuous at x_{0}. Find a pair of A and c such that the null hypothesis of continuity can be expressed as $A \theta=c$.
(e) Construct an F test to test the hypothesis of a continuous mean response curve. This can be done by either (1) using the distribution of $\hat{\theta}$ or (2) comparing the residual sum of squares (RSS) of a reduced model to $R S S_{\text {full }}$. If you choose (1), describe the distribution of $\hat{\theta}$ and the null distribution of $A \hat{\theta}-c$. If you choose (2), describe the reduced model using parameters α_{1}, β_{1}, and β_{2}. In both cases, provide the null distribution of your F-statistic.

(End of Problem 6)

7. Assume that X_{1}, X_{2}, \ldots are independent and identically distributed (i.i.d.) with density

$$
f(x)=\frac{e^{-x / \mu}}{\mu}
$$

for $x>0$, where $\mu>0$ is unknown (exponential distribution with mean μ). Recall that the variance of this distribution is μ^{2}.
(a) What is the maximum likelihood estimator (MLE) δ_{n} of μ^{2} based on the first n observations $X_{1}, X_{2}, \ldots, X_{n}$? How do you know it is the MLE?
(b) Prove that δ_{n} is a consistent sequence of estimators for μ^{2}, i.e., δ_{n} converges in probability to μ^{2} as $n \rightarrow \infty$.
(c) Find the limiting distribution as $n \rightarrow \infty$ of $\sqrt{n}\left(\delta_{n}-\mu^{2}\right)$.

Table 1: Common distributions and densities.

Distribution	Notation	Density
Bernoulli	Bern(θ)	$f(y \mid \theta)=\theta^{y}(1-\theta)^{1-y}$
Binomial	$\operatorname{Bin}(n, \theta)$	$f(y \mid \theta)=\binom{n}{y} \theta^{y}(1-\theta)^{n-y}$
Multinomial	$\operatorname{Multi}\left(n ; \theta_{1}, \theta_{2}, \ldots, \theta_{K}\right)$	$f(y \mid \theta)=\frac{n!}{y_{1}!y_{2}!\ldots y_{K}!} \theta_{1}^{y_{1}} \theta_{2}^{y_{2}} \cdots \theta_{K}^{y_{K}}$
Beta	$\operatorname{Beta}(a, b)$	$p(\theta)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \theta^{a-1}(1-\theta)^{b-1} I_{(0,1)}(\theta)$
Uniform	$U(a, b)$	$p(\theta)=\frac{I_{(a, b)}(\theta)}{b-a}$
Poisson	$\operatorname{Pois}(\theta)$	$f(y \mid \theta)=\theta^{y} e^{-\theta} / y!$
Exponential	$\operatorname{Exp}(\theta)$	$f(y \mid \theta)=\theta e^{-\theta y} I_{(0, \infty)}(y)$
Gamma	$\operatorname{Gamma}(a, b)$	$p(\theta)=\left[b^{a} / \Gamma(a)\right] \theta^{a-1} e^{-b \theta} I_{(0, \infty)}(\theta)$
Chi-squared	$\chi^{2}(n)$	Same as $\operatorname{Gamma}(n / 2,1 / 2)$
Weibull	Weib (α, θ)	$f(y \mid \theta)=\theta \alpha y^{\alpha-1} \exp \left(-\theta y^{\alpha}\right) I_{(0, \infty)}(\theta)$
Normal	$N(\theta, 1 / \tau)$	$f(y \mid \theta, \tau)=(\sqrt{\tau / 2 \pi}) \exp \left[-\tau(y-\theta)^{2} / 2\right]$
Student's t	$t(n, \theta, \sigma)$	$f(y \mid \theta)=\left[1+(y-\theta)^{2} / n \sigma^{2}\right]^{(n+1) / 2}$
		$\times \Gamma[(n+1) / 2] / \Gamma(n / 2) \sigma \sqrt{n \pi}$
Cauchy	Cauchy ()	same as $t(1, \theta, 1)$
Dirichlet	Dirichlet $\left(a_{1}, a_{2}, a_{3}\right)$	$\begin{aligned} & p(\theta)=\Gamma\left(a_{1}+a_{2}+a_{3}\right) / \Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right) \Gamma\left(a_{3}\right) \\ & \times \theta_{1}^{a_{1}-1} \theta_{2}^{a_{2}-1}\left(1-\theta_{1}-\theta_{2}\right)^{a_{3}-1} \\ & \times I_{(0,1)}\left(\theta_{1}\right) I_{(0,1)}\left(\theta_{2}\right) I_{(0,1)}\left(1-\theta_{1}-\theta_{2}\right) \end{aligned}$

Table 2: Means, Modes, and Variances.

Distribution	Mean	Mode	Variance
$\operatorname{Bern}(\theta)$	θ	0 if $\theta<.5$	$\theta(1-\theta)$
		1 if $\theta>.5$	
$\operatorname{Bin}(n, \theta)$	$n \theta$	integer closest to $n \theta$	$n \theta(1-\theta)$
$\operatorname{Beta}(a, b)$	$a /(a+b)$	$(a-1) /(a+b-2)$	$a b /(a+b)^{2}(a+b+1)$
		if $a>1, b \geq 1$	
$U(a, b)$. $5(a+b)$	everything a to b	$(b-a)^{2} / 12$
$\operatorname{Pois}(\theta)$	θ	integer closest to θ	θ
$\operatorname{Exp}(\theta)$	$1 / \theta$	0	$1 / \theta^{2}$
$\operatorname{Gamma}(a, b)$	a / b	$(a-1) / b$	a / b^{2}
		if $a>1$	
$\chi^{2}(n)$	n	$n-2$	$2 n$
		if $n>2$	
$\operatorname{Weib}(\alpha, \theta)$	$\Gamma[(\alpha+1) / \alpha] / \theta$	$[(\alpha-1) / \alpha]^{1 / \alpha} / \theta$	$\Gamma[(\alpha+2) / \alpha]-\mu^{2}$
$N(\theta, 1 / \tau)$	θ	θ	$1 / \tau$
$t(n, \theta, \sigma)$	θ	θ	$\sigma^{2} n /(n-2)$
	if $n \geq 2$		if $n \geq 3$
Cauchy (θ)	Undefined	θ	Undefined

