
Written Comprehensive Examination - Theory

Department of Statistics, UC Irvine

Friday, June 16, 2023, 9:00 am to 1:00 pm

• There are 7 questions on the examination. Select any 5 of them to solve. If you attempt 
to solve more than 5 questions, you are only to turn in the 5 you want graded. If you 
turn in partial solutions to more than 5 questions, only 5 will be graded.

• Each of the 5 problems you attempt to solve will be worth equal credit, with each 
accounting for 20% of your final score on this examination.

• Your solutions to each problem should be written on separate sheets of paper one 
side only with the backside left blank.  Label each sheet with your identifier 
number emailed to you by the Department Manager Laura Swendson, the problem 
number, and the page number of that solution written in the upper right hand corner. 
For example, the labeling on a page may be: ID# 8267

 Problem 2, page 3

• You have 4 hours to complete your solution. Please be prepared to turn in your exam
at 1:00pm.
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1. Let X and Y be independent random variables with X ∼ Exp(λ) and Y ∼ Exp(µ). Define
random variables Z and W such that Z = min{X,Y } and W = 1 if X ≤ Y and W = 0 if
X > Y .

(a) Compute Pr(W = 1) by using double integrals.

(b) Compute Pr(Z ≤ z) where z > 0 is a constant. Identify the marginal distribution of Z
by name and parameter.

(c) Compute the joint probability Pr(Z ≤ z,W = 1) where z > 0 is a constant. Do the same
for Pr(Z ≤ z,W = 0).

(d) Show that W and Z are independent.

(End of Problem 1)
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2. The joint pdf of (X,Y ) is

f(x, y) =
λ√
2π

exp

{
−(y − θx)2

2
− λx

}
, x > 0, −∞ < y < ∞.

where λ > 0 and θ ∈ (−∞,∞) are parameters.

(a) Find the marginal pdf of X and identify this well known distribution by name and pa-
rameter.

(b) Find the conditional mean and variance of Y given X.

(c) Suppose we observe (Xj , Yj), j = 1, . . . , n, iid (independent and identically distributed)
with this joint distribution. Identify a three-dimensional sufficient statistic for (θ, λ).

(d) In the setting of part (c) derive the maximum likelihood estimator of (θ, λ).

(End of Problem 2)
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3. Suppose Xj ∼ Exp(λ) and Yj |Xj ∼ Poisson(θXj), independently for j = 1, . . . , n. The
parameters λ and θ are both positive.

(a) Compute Fisher’s expected information for (λ, θ) based on the n bivariate samples (Xj , Yj), j =
1, . . . , n. (Hint: this is a 2× 2 matrix.)

(b) Show that the estimator θ̃ ≡ ∑n
j=1 Yj/

∑n
j=1Xj is consistent for θ.

(c) Is the estimator θ̃ in part (b) unbiased for θ? Explain.

(d) Is the estimator θ̃ in part (b) asymptotically normal for θ? Justify.

(e) Describe how you may obtain an approximate 95% confidence interval for θ, valid for large
n.

(End of Problem 3)
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4. Suppose Yj |(µ0, σ
2) ∼ N(µ0, σ

2) independently for j = 1, . . . , n. Assume µ0 is known and
σ2 > 0 is the only unknown parameter.

(a) Derive the likelihood ratio test for testing H0 : σ2 = σ2
0 vs H1 : σ2 ̸= σ2

0 where σ2
0 > 0 is

a constant. Explain how you determine the rejection region to achieve level α = 0.05 based
on the exact distribution of your test statistic.

(b) Derive a 95% confidence interval for σ2 based on the statistic T ≡ ∑n
j=1(Yj − µ0)

2.

(c) Consider a Bayesian approach under the prior p(σ2) ∝ 1/σ2. Derive the posterior density
of σ2 and that of δ ≡ 1/σ2. Express the (unnormalized) posterior density of δ in the form of
δU−1e−δV and specify the statistics U and V .

(d) In the setting of part (c), describe how you may find a 95% highest probability density
(HPD) posterior credible interval for δ. (You may use the form of the posterior density of δ
in part (c) even if you did not complete part (c).)

(e) In the setting of part (c), find the Bayes estimator of δ ≡ 1/σ2 under squared error loss.
(You may use the form of the posterior density of δ in part (c) even if you did not complete
part (c).)

(End of Problem 4)
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5. Consider the two-way model
Yij = µ+ αi + βj + ϵij

where i = 1, 2; j = 1, 2 and ϵij
iid∼ (0, σ2). Note that there is only one observation per cell.

(a) Express the model in the matrix form

Y = X




µ
α1

α2

β1
β2




+ ϵ

Note that rank(X) = 3 (you do not need to show this part).

(b) Show that µ is NOT estimable.

(c) Consider mµ+a1α1+a2α2+b1β1+b2β2. Assuming that this linear function is estimable,
prove that m, the a′is, and the b′js must satisfy m = a1 + a2 = b1 + b2.

(d) State the Gauss-Markov theorem.

(e) Suppose that we are interested in estimating 2µ + α1 + α2 + 1.5β1 + 0.5β2. To use
Gauss-Markov theorem to find its BLUE, we need to find least-square estimates (LSE)
of the parameters. Follow the instructions below to find LSE of (µ, α1, α2, β1, β2). Then
find the BLUE of 2µ+ α1 + α2 + 1.5β1 + 0.5β2.

i. Parameterize the model using parameters µ, α1, α2, β1 − β2, β1 + β2 then find the
corresponding design matrix, which is denoted by X̃.

ii. Note that the rank of the design matrix X̃ is also 3. To find an LSE of (µ, α1, α2, β1−
β2, β1+β2), we can use a “subset” method by deleting the first and the last columns.
In other words, we set µ̂ = 0, β̂1+β̂2 = 0 and find LSE of α1, α2, β1−β2. This sounds
complicated but you will notice that the three remaining columns are orthogonal
with each other.

(End of Problem 5)

6



6. Segmented regression is a special type of regression in which an explanatory variable is par-
titioned into intervals and a separate line segment is fitted to each interval. Consider a two-
segment linear model. This can be formulated as a linear model with a known “breakpoint”,
denoted by x0.

Yi =

{
α2 + β2xi + ϵi if xi > x0
α1 + β1xi + ϵi if xi ≤ x0

where i = 1, · · · , n and ϵ1, · · · , ϵn iid∼ N(0, σ2). Without loss of generality (also for conve-
nience), we assume that x1 ≤ x0, · · · , xm ≤ x0, xm+1 > x0, · · · , xn > x0.

(a) Rewrite the model in the form Y = Xθ + ϵ, where X is the n × 4 design matrix and
θ = (α1, β1, α2, β2)

T . Specify the design matrix as explicitly as possible.

(b) Examine the design matrix X and the matrix XTX. Explain why the least squares
estimate of θ is equivalent to fitting two separate regression lines for the first m and the
remaining n−m points separately.

(c) Let RSSfull denote the residual sum of squares for the two-segment linear regression.
Derive the distribution of RSSfull/σ

2.

(d) Based on the model above, E(Y |x0) = α1 + β1x0 but E(Y |x+0 ) = α2 + β2x0 where
E(Y |x+0 ) is the limit of E(Y |x) as x approaches x0 from the right. Therefore, the mean
response curve E(Y |x) is not necessarily continuous at x0. We would like to test whether
this curve is continuous at x0. Find a pair of A and c such that the null hypothesis of
continuity can be expressed as Aθ = c.

(e) Construct an F test to test the hypothesis of a continuous mean response curve. This
can be done by either (1) using the distribution of θ̂ or (2) comparing the residual sum of
squares (RSS) of a reduced model to RSSfull. If you choose (1), describe the distribution

of θ̂ and the null distribution of Aθ̂ − c. If you choose (2), describe the reduced model
using parameters α1, β1, and β2. In both cases, provide the null distribution of your
F-statistic.

(End of Problem 6)
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7. Assume that X1, X2, . . . are independent and identically distributed (i.i.d.) with density

f(x) =
e−x/µ

µ

for x > 0, where µ > 0 is unknown (exponential distribution with mean µ). Recall that the
variance of this distribution is µ2.

(a) What is the maximum likelihood estimator (MLE) δn of µ2 based on the first n observa-
tions X1, X2, . . . , Xn? How do you know it is the MLE?

(b) Prove that δn is a consistent sequence of estimators for µ2, i.e., δn converges in probability
to µ2 as n → ∞.

(c) Find the limiting distribution as n → ∞ of
√
n
(
δn − µ2

)
.
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Table 1: Common distributions and densities.

Distribution Notation Density
Bernoulli Bern(✓) f(y|✓) = ✓y(1 � ✓)1�y

Binomial Bin(n, ✓) f(y|✓) =
�

n
y

�
✓y(1 � ✓)n�y

Multinomial Multi(n; ✓1, ✓2, . . . , ✓K) f(y|✓) = n!
y1!y2!...yK !

✓y1

1 ✓y2

2 · · · ✓yK

K

Beta Beta(a, b) p(✓) = �(a+b)
�(a)�(b)

✓a�1(1 � ✓)b�1I(0,1)(✓)

Uniform U(a, b) p(✓) =
I(a,b)(✓)

b�a

Poisson Pois(✓) f(y|✓) = ✓ye�✓/y!

Exponential Exp(✓) f(y|✓) = ✓e�✓yI(0,1)(y)

Gamma Gamma(a, b) p(✓) = [ba/�(a)]✓a�1e�b✓I(0,1)(✓)

Chi-squared �2(n) Same as Gamma(n/2, 1/2)

Weibull Weib(↵, ✓) f(y|✓) = ✓↵y↵�1 exp (�✓y↵) I(0,1)(✓)

Normal N(✓, 1/⌧) f(y|✓, ⌧) = (
p

⌧/2⇡) exp [�⌧(y � ✓)2/2]

Student’s t t(n, ✓, �) f(y|✓) = [1 + (y � ✓)2/n�2]
(n+1)/2

⇥ �[(n + 1)/2]/�(n/2)�
p

n⇡

Cauchy Cauchy(✓) same as t(1, ✓, 1)

Dirichlet Dirichlet(a1, a2, a3) p(✓) = �(a1 + a2 + a3)/�(a1)�(a2)�(a3)

⇥ ✓a1�1
1 ✓a2�1

2 (1 � ✓1 � ✓2)
a3�1

⇥ I(0,1)(✓1)I(0,1)(✓2)I(0,1)(1 � ✓1 � ✓2)
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Table 2: Means, Modes, and Variances.

Distribution Mean Mode Variance
Bern(✓) ✓ 0 if ✓ < .5 ✓(1 � ✓)

1 if ✓ > .5

Bin(n, ✓) n✓ integer closest to n✓ n✓(1 � ✓)

Beta(a, b) a/(a + b) (a � 1)/(a + b � 2) ab/(a + b)2(a + b + 1)

if a > 1, b � 1

U(a, b) .5(a + b) everything a to b (b � a)2/12

Pois(✓) ✓ integer closest to ✓ ✓

Exp(✓) 1/✓ 0 1/✓2

Gamma(a, b) a/b (a � 1)/b a/b2

if a > 1

�2(n) n n � 2 2n

if n > 2

Weib(↵, ✓) �[(↵ + 1)/↵]/✓ [(↵� 1)/↵]1/↵/✓ �[(↵ + 2)/↵] � µ2

N(✓, 1/⌧) ✓ ✓ 1/⌧

t(n, ✓, �) ✓ ✓ �2n/(n � 2)

if n � 2 if n � 3

Cauchy(✓) Undefined ✓ Undefined
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