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Bayesian Model Selection: Two Competing Models

Two models for data:

y | M0 ∼ p(· |,M0, θ0) y | M1 ∼ p(· | M1, θ1)

Compare
Log-Normal model to Weibull model for non-negative data
Logistic Regression model to Probit regression model for
Binomial data
Models in the same family with parameters θ0 ⊂ θ1, or not

Elicit prior distributions: p0(θ0) and p1(θ1)

Specify prior probabilities

q0 = Pr(H0) q1 = 1− q0 = Pr(H1)

Calculate Pr(Mi | y). Choose M1 if

Pr(M1 | y) > 0.99 ⇔ Pr(M1 | y)/Pr(M0 | y) > 99
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Bayesian Model Selection: Two Competing Models

We require the marginal predictive densities for the
observed data:

p(y | Hi) ≡
∫

p(y | Hi , θi)pi(θi)dθi i = 0,1.

We regard this as the (marginal) “plausibility” of the
observed data under model Mi

Also termed the marginal Lik(Mi | y)

With improper priors the marginal pdf often doesn’t exist
Applying Bayes Theorem:

Pr(M1 | y) =
q1p(y | M1)

q0p(y | M0) + q1p(y | M1)
.
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Bayesian Model Selection: Two Competing Models

Decision theoretic criteria make it “easy” to decide on a
cutoff for deciding in favor of either model
Since
Pr(M1 | y) > k ⇔ Pr(M1 | y)/[1− Pr(M1 | y)] > k/(1− k),
the posterior odds are often used to make a decision
We have

Pr(M1 | y)

Pr(M0 | y)
=

q1p(y | M1)

q0p(y | M0)

≡ q1

q0
BF ,

BF is the ratio of marginal likelihoods of the models M1
and M0
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Bayesian Model Selection: Two Competing Models

Thus, posterior Odds equals the prior odds q1/q0 times the
Bayes Factor
If we favor both models equally, we set the prior odds to
one, so posterior odds reduced to the BF
With k = 0.5, we select model M1 if BF > 1
With k = 0.95, we select model M1 if

BF > 0.95/0.05 = 19⇔ p(y | M1) > 19 p(y | M0),

which is considerably more stringent
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Bayesian Model Selection: Two Competing Models

The BF is often preferred to Pr(M1 | y) as a criterion for
making a decision because it may be difficult or
controversial to pick a value for the prior probability Pr(M1)

Suppose M0 corresponds to the hypothesis that a particular
cancer drug will have no effect in terms of prolonging life
Suppose M1 corresponds to a hypothesis that a defendant
is guilty of murder

Using the BF eliminates this issue at the expense of having
to decide how large does BF need to make a decision
But recall that the marginal likelihoods

p(y | Hi) ≡
∫

p(y | Hi , θi)pi(θi)dθi i = 0,1.

still depend on the marginal prior specifications
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The Two-Sample Comparison

Assume two independent normal samples with different
means, (µ1, µ2), and common variance σ2

Define

t =
ȳ1 − ȳ2 − 0

sp
√

1/n1 + 1/n2
≡
√

nδ(ȳ1 − ȳ2)

sp

Define the effect size (and nuisance parameter)

δ =
µ1 − µ2

σ
, γ =

µ1 + µ2

2

Let p(γ, σ2) ∝ 1/σ2, and (independently) δ ∼ N(λ, σ2
δ )

Then the BF comparing

M0 : δ = 0 to M1 : δ 6= 0

is an analytical function of t2 cf. Gönen et al. (2005)
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Subjective Prior for PSI Study (Study of Paranormal
Phenomena)

GBF specify prior for δ based on subjective information
A PSI study was performed to ascertain whether a
particular type of psychic phenomenon exists based on the
frequentist analysis of nine experiments (Bem, 2011)
Bem et al. (2011) re-analyzed the data using GBF
δ̂ s in PSI studies typically range from 0.2 to 0.3; previous
meta-analysis of 56 psi experiments had est median δ̂
across studies of 0.18 (Utts et al., 2010); meta-analysis of
38 studies with ave δ̂ = 0.28 (Mossbridge, Tressoldi, and
Utts, 2011)
They asserted no reasonable observer would ever expect
δ > 0.8 in laboratory psi experiments
Selected prior for δ was N(0, (0.5/1.645)2); 95th percentile
is 0.5; Pr(−0.5 < δ < 0.5) = 0.9, and Pr(δ < 0) = 0.5
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Effect Sizes

It is common in medical and psychology literature focus on
the effect size, δ = (µ1 − µ2)/σ

So if δ = 2, we know that the difference in population
means is two population standard deviations above zero
This is is an extraordinary difference and exemplifies a
difference that one could literally see
For example, the effect size for the difference between
adult male and female heights in the US is 2 (cf. Utts and
Heckard, p. 541)
If one can actually see the difference, there may be no real
need for conducting an expensive experiment to a forgone
conclusion
In some literature, effect sizes between 0.2 and 0.5 are
common and effect sizes larger than 0.8 are considered
quite large
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A Controversy between Objective and Subjective
Points of View

Wang and Liu (2015) presented an objective Bayes factor
(BF) as an alternative to a subjective one presented by
Gönen et al. (2005). Their BF is also a function of the data
only through t2

They intended to show superiority of WBF to GBF based
on undesirable behavior of GBF

An evident premise in WBF is that Objectivity is good and
Subjectivity not so much

Wonderful Bayesian feature is that we get to lay all cards
on the table

Major distinguishing feature of various BFs is the choice of
priors (cards)
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Properties for BFs

Objective BFs typically involve priors chosen to have nice
frequentist properties

Often/mostly don’t incorporate subjective scientific input

Objective priors are often termed as diffuse, or
non-informative

But so-called non-informative priors may be dis-informative
eg. a uniform prior on the unknown prevalence of HIV
infection among blood donors; more to come

We are all concerned about the sensitivity of inferences to
the choice of prior distribution
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Properties for BFs

Desiderata of BFs have been discussed in the literature,
including Bayarri et al. (2012), Rossell and V. Johnson
(2011) and V. Johnson (2013AB)

We give a list of essentially objective properties, not
necessarily good ones in our opinion

We then offer new desiderata that we argue may be
scientifically more relevant
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Properties for BFs: Objective Point of View

1: Consistency: As the sample sizes grow , BF →∞ if
M1 is true, and BF → 0 M0 is true

2: Finite Sample Consistency (FSC): FSC means that for
fixed sample sizes, as |t | → ∞, BF →∞

3: Robustness to Prior: Standard motivation for using
BFs rather than Pr(Mi | data) is that BF is free of Pr(Mi).
BFs should also be reasonably insensitive to the
within-model priors, p(θi |Mi)

4: Compatibility with Frequentist Testing: If |t | is large,
leading to frequentist rejection of M0, the BF should not
favor M0 eg. no Bartlett paradox (Bartlett, 1957)
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Properties for BFs: Objective Point of View

5: Ability to Accumulate Evidence Favoring M0: As the
sample size grows, the evidence favoring either M0 or M1
should be able to grow at the same rate

6: High Power: Under M1, the (frequentist) probability (for
a particular prior specification) that the BF exceeds a given
threshold should be large relative to BFs computed using
other priors

Researchers typically propose prior distributions to get BFs
that satisfy these desiderata, rather than to incorporate
scientifically relevant information (SRI)
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Properties for BFs

In followup paper to Gönen et. al. (2005), Gönen et. al.
(2017)

(i) Discuss these criteria
(ii) Lay subjective and objective cards on the table
(iii) Encourage use of minimizing TPM to compare BFs

They argue that objective priors for δ can be silly/absurd
from a subjective viewpoint eg. priors that allow large prior
probability that δ > 2 when only relatively small values of δ
can be reasonably anticipated
They argue in favor of selecting a classification rule based
on minimizing the total probability of mis-classification;
Fisher’s linear discriminant function for classifying
multivariate normals into groups can be derived as a
Bayes Rule that minimizes the TPM

More generally, the maximum posterior probability rule
minimizes TPM when TI and TII errors are comparable
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Additional Property

7 Incorporate Scientifically Relevant Information:

Our focus is on taking account of SRI when specifying λ
and σδ in our normal prior for δ

In our experience in working with scientists in collaborative
settings, their attitude as been of the nature “why wouldn’t I
want to take account of my own expertise and knowledge”
in the analysis of my data

Moreover we argue that, when attempting to specify an
objective prior, it may be dangerous to not take account of
any unintended consequences that are implied by its
specification

Consequently, we argue for the necessity of inspecting
objective priors to highlight any
inconsistencies/incompatibility with known SRI

Berger and Delampady (1987) argued that there was no
such thing as an objective prior for this problem
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PSI Study with Cauchy Prior on δ: Jeffreys BF

If δ ∼ Cauchy (Wagenmakers et al. 2011), we get prior
probabilities

Pr(|δ| > 0.8) = 0.57,Pr(|δ| > 2) = 0.30,Pr(|δ| > 5) = 0.16

Corresponding BF is a function of t2

If effect sizes were really that large, there would be no
debate about the reality of PSI

Recall that the effect size for measuring the effect of the
difference of male and female heights in the US is about 2

We consider this to be a wildly unrealistic prior for the
particular PSI problem under study

The combined BF for the 9 experiments using the Cauchy
prior is 0.632 while the corresponding GBF = 13,699
WOW!
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Cauchy Prior on δ

Rouder et. al. (2009) discuss the situations:
δ ∼ N(0,1), δ ∼ Cauchy(0, r2) (Jeffreys was first with
r = 1; then Zellner-Siow, (1980))
Rouder et al argue, as we do, that not too much prior
weight should be attached to “large” values of δ
They argue in favor of Subj normal priors on δ, when
information is available, and the “Obj” Cauchy when not
They point out that, in a single sample problem with
n = 500, the t value corresponding to BF = 10 in favor of
M0 is 1.44, and the corresponding t value corresp to
BF = 10 in favor of M1 is 3.38; quite different from the
usual cutoff in latter case; Zellner and Siow (1980) made
the same kind of point
The dramatic difference in BFs in the PSI example makes
the point that the choice of prior really can matter
They note λ = 0, 1/σ2

δ ∼ χ2
1 ⇒

δ ∼ Cauchy(0,1)

(established by Liang et al., 2008)
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WBF

Wang and Liu (2015) used σ2
δ ∼ Pearson VI(a,b); BF is a

function of t2

In order to satisfy finite sample consistency, they selected
(a,b) such that

b = (n1 + n2 − 1)/2− a− 5/2

and a ∈ (−1,−1/2]

They argue that WBF will be robust if a = −0.75 (to other
choices admissible a)
With n1 = n2 = 10, the WL prior has median and 90th
percentiles for σδ of 6.2 and 158 respectively, while the
prior mode is only 1.11
Induced prior on δ has Pr(|δ| > k) = (0.8,0.64,0.44,0.10)
for k = (1,2,5,10); subjectively “worse” than the Cauchy
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Criticisms of GBF

A main criticism of GBF by WL is that it may suffer from
Bartletts paradox

It is true that if you let me pick σδ to be as large as I like,
then with t values in the usual rejection range and larger, I
can probably make the BF in favor of M0 grow indefinitely

But why on earth would I want to let σg be much larger
than 1, much less 106?

When any prior places a huge amount of mass on very
large values of δ, and when the data are suggesting that δ
is actually somewhat small, eg. 0.2 say, is it surprising that
the model believes that δ is so small relative to the
anticipated huge size, as to be effectively zero?
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Criticisms of GBF

Let Pr(Mi) = 0.5, σδ = 10 and n1 = n2 = 500, Then with
t = 2, 2.5, 4, 5

Pr(M0 | data) = (0.96, 0.87, 0.053, 0.0007)

(δ̂ = 0.13, 0.16, 0.26, 0.32)

This is all reasonable: With a prior that anticipates huge
effect sizes, it will take a larger t to conclude M1. It is a
really stupid prior

With a small estimated effect size < 0.5, and with large
enough σδ, we were able to make the BF in favor of M0
quite small for substantial values of t

We view this as perfectly reasonable behavior of the GBF,
an argument in favor of the Bartlett effect being a good
effect, and an argument for carefully choosing ones prior
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Lindley Paradox Revisited:

Specify δ ∼ N(0,1/9). This results in Pr(δ > 1) = 0.003
Plot Pr(M0 | nδ, t = 3) versus nδ
Corresponding effect sizes are

δ̂ = (3.0,0.95,0.3,0.095,0.03,0.0095,0.003,0.00095,0.0003)

Recall that t =
√

nδ δ̂ so δ̂ = t/
√

nδ
It’s not a paradox; it corrects for sample size

Figure 3. Posterior probability of H0 as a function of nδ when π0 = .5, ( λ; σδ) = (0, 1/3), and t = 3.00, illustrating Lindley’s paradox.

As a concluding note, it is simple to discuss “Lindley’s Para-dox” (Lindley 1957) using (2). Lindley 
noticed that data from large sample sizes that are “highly significant” from a frequentist standpoint can 
support H0 better than H1. Imagine, in the case above, that t = 3 .00, highly significant by any measure. 
From the frequentist standpoint, the result would be considered even more significant for larger values of 
n1 and n2. On the other hand, t = 3 .00 becomes less likely under H1 for extremely large nδ: the 
denominator of (2) decreases (since the variance 1 + nδσ

2 increases) while the numerator remains fixed. 
Figure 3 shows the effect of increasing nδ (assuming n1 = n2) o n t h e  posterior probability of H0 when t 
= 3 .00, showing a minimum posterior probability of .055 at nδ = 8 1 .5 (n1 = n2 = 163), and increasing 
to 1.0 thereafter for larger nδ. This seeming “para-dox” is not really a paradox at all, since the frequentist 
statistical significance with large nδ is a result of a large sample amplifi-cation of a very small effect size.

256

 

22 / 33



uscl ogoc ropped.pdf

Finite Sample Consistency

Wang and Liu (2015) note that the GBF is not finite sample
consistent since

GBF → (1 + nδσ2
δ )(n1+n2−2)/2 <∞ , |t | → ∞

Let σ2
δ = 1, Pr(Mi) = 0.5, and n1 = n2 = 10. Then as

t →∞

Pr(M1 | data) = GBF/(1 + GBF )→ 0.9999999

If the observed t is 3, 5 or 7, the corresponding posterior
probabilities are 0.90, 0.995, and 0.9997, so the limiting
bound plays no important role under these circumstances
Tempest in a teapot
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Bayes Factors that Don’t Depend on t

IBF: Intrinsic BF developed by Berger and Pericchi, avoids
proper prior specification

RJBF: Rossell and Johnson (2011) argued against
traditional objective BFs involving local priors having mode
at 0 under the alternative. They propose using symmetric
non-local priors, which require low probability mass near
the null, under the alternative specification

VJBF: Johnson (2013A, 2013B) proposes a BF using an
objective prior that maximizes the probability of exceeding
a given evidence threshold for all possible alternative prior
distributions. The resulting analysis has a close
correspondence with frequentist fixed α test procedures
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Additional Property

8: Correct Classification: Select a decision rule that
classifies models correctly as much as possible, eg that
minimizes the true/oracle TPM

Pr(M0)Pr(Decide M1 | M0) + Pr(M1)Pr(Decide M0 | M1)

With equal error costs and with q0 = q1 = 0.5, the Bayes
decision rule is

choose M1 if BF > 1 choose M0 otherwise

This rule only minimizes the oracle TPM if q0 = Pr(M0)
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TPM

Minimizing TPM is:

Objective and Subjective

Easily verified by simulation eg. simulate under what is
believed to be the true conditions and use the decision rule
that accords with that

Clearly shows the effects (positive or negative) of
assuming particular priors
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Properties for BFs

We thus would like the rule to classify the data as coming
from the correct model according to the actual frequency of
occurrence of these models

There is no right answer to the question, how often might
the different models occur? for the current experiment

However, because the answer to this question affects
classification rates substantially, researchers should
carefully consider this question when choosing a BF

We subsequently address this question using historical
data to provide partial answers
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Simulation Study to Compare Two-Sample
Comparisons BFs Objectively:

Step 1: Randomly generate σ2
δ from an assumed prior

distribution or assign a pre-specified positive value. Fix the
value of λ according to the selected method

Step 2: Randomly generate δ ∼ N(λ, σ2
δ ), or set δ = 0,

each with probability 0.5

Step 3: Randomly generate the t ∼ N(nδ δ, 1)/
√
χ2/ν)

Step 4: Calculate BFs that depend on t using the
simulated t value from Step 3

Step 5: A misclassification error occurs if BF > 1 and
δ = 0 or if BF < 1 and δ 6= 0

Step 6: Repeat Steps 1-5 NSIM times to estimate the TPM
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Simulations of TPM for Various Models:
TPM as function of nδ

 

Figure 2. Total probability of misclassification as function of nδ
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Historical Studies

A BF considered in Gönen et al. (2005) used the prior

δ ∼ N(2.8
√

1/nδ, [2.19
√

1/nδ]2)

which was designed to be consistent with subjective prior
information that is commonly used in power analysis

Researchers often choose a large sample size to
accommodate a priori information that the effect size is
small

This prior makes predictions that are reasonably consistent
with published oncology studies

Not recommended for general use, but researchers do
have prior information that can be used to construct their
prior distribution (See Gönen et al., 2005 for careful
illustration)
Performed simulations using this model for the generation
of data and compared different BFs

30 / 33



uscl ogoc ropped.pdf

Plots of TPM versus log10(nδ) under
δ ∼ N(2.8/

√
nδ, [2.19/

√
nδ]2)
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Wetzels

Wetzels et al. (2011) report results on 855 t tests from
publications in psychology journals, of which 166 were for
two-sample comparisons
The next Figure shows plot of pairs of |δ̂| versus 1/

√
nδ for

these studies

Absolute values used since not clear whether negative
estimates were in the anticipated directions

Least squares fit is λ = 0.20 + 2.75/
√

nδ

Comfortably agrees with the Gönen et al. suggestion of
λ = 0.00 + 2.8/

√
nδ

Additional studies of studies discussed in Gönen et al.
(2017) also suggest the value of using this type of
information in constructing subjective priors
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Plot of Wetzels et al. estimated effect sizes versus
1/
√

nδ
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