2017 Second Year Exam —Theory

Statistics 220AB
June 26, 2016
9:00 t0 1:00

Instructions

e This is a closed book and notes examination. You have four hours to work on it.

Do only 2 of the 3 problems in Part A and 2 of the 3 problems in Part B.
Do NOT turn in more than two problems in either part.

e Your solutions to each problem should be written on separate and single-sided
sheets of paper. Label each sheet with your student identification number, the
problem number, and the page number of that solution written in the upper
right hand corner. For example, the labeling on a page may be:

ID# 912346378
Problem 2, page 3

Be sure to justify your answers and steps.

Good luck!




PART A: Do only 2 of the following 3 problems.

1. “A probabilistic proof of Stirling’s formula” by Khan (1974)

(a) Consider a random sample Wi,..., W, from the standard exponential distribu-
tion, with mean and variance both equal to 1. Let S, = > ", W;. Show that
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where Z ~ N(0,1).

(b) Recall convergence in distribution does not necessarily imply convergence of their
means. Explain this result using the example where Y, is a binary random variable
with P(Y, =n)=n"1and P(Y, =0)=1-n"1.

(c) Recall one sufficient condition for convergence of means is called uniform integra-
bility (u.i.), which is defined as follows: a sequence of random variables {X,} is
w.i. if limg_eo sup,, E{| X, |I(|X,| > C)} = 0. Show that {Y,,} defined in part (b)
is not u.i.

(d) Show that if sup,, E|X,|'™° < oo for some constant § > 0, then X, is u.i.
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(f) Recall the sum of independent exponential distributions is Gamma. In particular,

we know S, ~ Gammay(n, 1), with pdf

is u.i.

< 00, hence conclude

(e) Now pick 6 = 1, show that sup, £

flz) = ﬁx"'le”, z>0

Show that
S, —n
\/ﬁ

(g) Use the fact that E|Z| = /2/m, now prove Stirling’s formula, n! ~ v/2rnn"e™",
for sufficiently large n.
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2. Let p and v be two probability measures.

(a) Explain what is meant by “u is absolutely continuous with respect to v”.
(b) State the Radon Nikodym theorem.

(c) Suppose p is Lebesgue measure on [0,1] and vy is a point mass at 0. Let v =
(1/2)( + vp). Show that p is absolutely continuous with respect to v and find
the Radon Nikodym derivative du/dv.

(d) In the setting of part (c) compute the integral [ fdv where f(w) = (1 —w)? for
w e [0,1].




3. Let d(X,Y) = F[|X = Y]|/(1+ |X —Y|)] for random variables X and Y.

(a) Show that d(X,Y’) = 0 implies that X =Y almost surely.
(b) Show that d(X,Y) <d(X, Z)+d(Y, Z).

(¢) Show that 15, Pr(|X — Y] >¢) <d(X,Y) < 15 +Pr(]X = Y| > ¢) for all € > 0.
(d) Show that d(X,, X) — 0 implies X,, — X in probability as n — oo.

(e) Show that X,, — X in probability implies d(X,, X) — 0.




PART B: Do only 2 of the following 3 problems.

. Decision theory and Bernstein-von Mises theorem

Consider a random sample X, ..., X, from a Poisson distribution with mean A > 0.
We can assign a conjugate prior on A ~ Gamma(a, ), then we know the posterior
distribution of A\ is Gamma(o + Y X;, 5 + n). Recall the mean and the variance
of Poi(\) are both A\. The mean and variance of Gamma(a, ) are o/ and /32
respectively.

(a) Consider Lo-loss, i.e., the loss function is [(A\,A) = (A — A)2. Find the Bayes
estimator for Gamma(c, 8) prior and calculate its risk.

(b) Is X,, + 1 admissible? Explain.

(c) Consider a loss function [(A\,A) = (A — A)2/A. Show that the risk of X, is a
constant.

(d) Prove that if a decision rule § is admissible and has constant risk, then § is
minimax.

(e) Now let’s assume that we know X, is admissible. Then use previous parts to
conclude that X,, is minimax.

(f) For the second part of this problem, let’s heuristically verify Bernstein-von Mises
theorem, which essentially says that the posterior distribution of X is close to a
normal distribution with mean equals to the MLE, and the variance equals to
the same asymptotic variance of MLE. Treat A as.random, and note that the
posterior of A satisfies (84 n)\ ~ Gamma(a+ > X;, 1). Show that the posterior
distribution II(- | X1,...,X,) of A satisfies

H{%(A—Xn) | Xl,...,Xn} 4 N(0,1).




5. Asymptotics of extreme order statistics

Consider a random sample X7, ..., X, from a Uniform distribution on [0, ] with pa-
rameter 6 > 0.

(a) Bahadur representation states that if the pdf f satisfies f(6,) > 0, then \/ﬁ(ép —
6,) 4N 0,p(1=p)/(f (QAp))Z). Now find the asymptotic distribution of the median
X(ns2) (in other words, ;) using this result.

(b) Apply Bahadur representation on the maximum X,). Explain why the result is
not useful.

(c) Show that n(0 — X)) % 93, where S follows the standard exponential distribu-
tion. In case needed, the pdf, cdf and cf of S are e™, 1 — e, and (1 — 4t)~,
respectively. '

(d) Now use the symmetry argument to show n.X () 4 05,

(e) Recall that in general, X, A X and Y, %V do not necessarily imply X, +Y,, 4
X +Y. Give a counter-example to illustrate and explain.

(f) Now in addition to X, A x , Y, LS Y, we also assume that X,, is independent of
Y, for every n, and X is independent of Y. Show that (X,,Y,) LN (X,Y) using
characteristic functions.

(g) Suppose that we know X1y and X(,) are asymptotically independent. Use this
result to find the limiting distribution of (X, 4+ X1y — 6).

(h) Now compare 2X,, X (n) + Xy and 2X(,, /) as estimators of . Explain which one
you would prefer to use.




6. Maximum likelihood estimation: strong consistency and superefficiency

(a)

(d)

(e)

First, let’s try to prove the strong consistency of MLE using Shannon’s inequality.
Recall that for two density functions p and ¢, we define their Kullback-Leibler
(KL) divergence as

KIL( ,q)=/plog§dg:Eplog§.

Explain why KL-divergence is not a distance metric.

Recall Jensen’s inequality: E(¢(X)) < ¢(EX) for a concave function ¢; and the
equality holds if and only if either X is degenerate or ¢ is linear. Now use the
fact that ¢(z) = logz is a concave function to prove this result: KL(p,q) > 0
and the equality holds only if p = ¢, almost everywhere.

Let [,, be the log-likelihood function based on n i.i.d observations X1, ..., X, with
pdf f. Let 6, and 6y be the MLE and the true value for parameter 6. Note that

you can write
F(Xi | 6n)
Ly log
@) Z F(Xi[60)

Explain how you will use SLLN and Shannon s inequality to prove Strong con-
sistency of the MLE. (Feel free to make any reasonable assumptions you like)

Next let’s consider X, ... R N(0,1). Define Hodges’ estimator by T}, = X,,
ol <

if |X,| > n_1/4 and T, = aX if | X,,| < n~* for some constant a € [0,1). Show
that /nT, 5 N(0,a?).

Use the example in (d) to briefly explain what superefficiency means, and why it
is of interest.




Table 1: Common distributions and densities.

Distribution Notation Density
Bernoulli Bern(6) fylo) =6v(1—0)v
Binomial  Bin(n, 6) Flo) = ()ov(1 — oy
Multinomial Multi(n; 61, 6s,...,0k) f(y|0) = meiﬂ 05> - Y%
Beta Beta(a, b) p(0) = Fsas 0™ (1 = 0)" 10,1 (6)
Uniform Ula,b) p(0) = I(—‘Z’f);ﬁ
Poisson Pois(0) fylo) = 6ve0 Jy!
Exponential Exp(f) F(|0) = 07110 00)(y)
Gamma Gamma(a, b) p(0) = [b°/T(a)]0° e I (g o) (0)
Chi-squared  x*(n) Same as Gamma(n/2,1/2)
Weibull Weib(a, 0) f(yl0) = Oay*t exp (—0y*) Lio,0)(0)
Normal  N(6,1/7) F(w1,7) = (/727 exp [ rly — 67/
Student’s ¢ t(n,6,0) Flo) =1+ (y — 0)2/no? "7
x Il(n +1)/2l/T(n/2)o/nm
Cauchy Cauchy(6) same as t(1,0,1)
Dirichlet Dirichlet (a1, as, az) p(0) =T(a; + as + a3)/T(a1)T'(az)T(a3)

X 09710211 — ) — )t
X T(0,1y(61)L0,1)(02)1(0,1)(1 — 01 — 02)




Table 2: Means, Modes, and Variances.

Distribution ~Mean Mode Variance
Bern(6) 0 0if 6 < .5 6(1—0)
1ifd>.5
Bin(n, 0) no integer closest to nf nd(1 — 0)
Beta(a, b) a/(a+ D) (a—1)/(a+b—2) ab/(a+b)*(a+b+1)
ifa>1b>1
Ul(a,b) bla+10) everything a to b (b—a)?/12
Pois(#) 0 integer closest to 8 6
Exp(6) 1/6 0 1/6*
Gamma(a,b) a/b (a—1)/b a/b?
ifa>1
X% (n) n n—2 2n
iftn>2
Weib(a, ) Tl(a+1)/al/f [(a—1)/a]t/*/0 L[(o+2)/a] — p?
N(0,1/7) 7 0 1/T
t(n,0,0) 0 7 o’n/(n — 2)
ifn>2 ifn>3
Cauchy(6) Undefined 0 Undefined




