
Second Year Exam - 220AB (Theory)
2019

This is a closed book and notes examination. You are to answer exactly 5 of the following 6 questions. Use
your time wisely. Clearly justify each step. The 5 questions you choose to answer will be worth equal credit.
If you attempt all 6 questions, your grade will be based on your 5 highest scores. Please write only on one
side of each page.

1. Let (Ω,F , P ) be a probability space.

(a) Let X : Ω → R be a function. Show that {ω : X(ω) < a} ∈ F for all a ∈ R is equivalent to
{ω : a < X(ω) ≤ b} ∈ F for all a < b.

(b) Suppose X : Ω → R is measurable. Construct a sequence of simple functions Xn such that
Xn → X almost surely. If you cannot find such a sequence then at least describe how simple functions
are defined in a measure-theoretic setting.

(c) State Monotone Convergence Theorem and Fatou’s Lemma.

(d) Deduce Fatou’s Lemma from Monotone Convergence Theorem.
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2. Let H(x) = I(x ≥ 0)(1 + x+ x2) where I is the indicator function.

(a) Verify thatH(x) is a generalized distribution function. That is, H(x) is real-valued, right continuous
and non-decreasing.

(b) Let g(x) = −1 for x ∈ [0, 2] and g(x) = 1 for x ∈ (2, 3] and g(x) = 0 otherwise. Compute∫
R g(x)dH(x) using the definition.

(c) Let G be non-decreasing and continuous. Use Fubini’s theorem to prove the following integration
by parts formula:∫

(a,b]

G(x)dH(x) = G(b)H(b)−G(a)H(a)−
∫
(a,b]

H(x)dG(x), −∞ < a < b <∞ (1)

Justify all steps.

(d) How would you revise your formula (1) if we do not assume G is continuous? Justify.

(e) Use your revised formula in part (d) to compute
∫
(−1,2]

H(x)dH(x).
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3. Let Y1, . . . , Yn, . . . be identically distributed with mean µ, variance σ2 > 0 and finite E(Y 4
j ). The

sample variance is defined as Sn =
∑n
i=1(Yi − Ȳn)2/(n − 1) where Ȳn =

∑n
i=1 Yi/n. In parts (b) -(d)

we assume the Yj ’s are iid.

(a) Show that (n− 1)Sn =
∑n
i=1 Y

2
i − nȲ 2

n

(b) Show that Sn → σ2 almost surely as n→∞. You must explain why σ2 is finite.

(c) State the joint asymptotic distribution of (
∑n
i=1 Y

2
i /n,

∑n
i=1 Yi/n)

(d) Use the Delta method to find the asymptotic distribution of Sn, suitably standardized.

(e) Instead of assuming Yj ’s are iid, let us assume they arise from a moving average process. Specifically,
suppose Yj = (Zj + Zj+1)/2 with Zj ’s being iid. Show that Sn → c almost surely and identify the
constant c.
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4. An example on convergence

Consider the Borel sigma field on Ω = [0, 1) and the Lebesgue measure. For every ω ∈ Ω, define a
sequence of random variables Xn : ω → Xn(ω) as X1(ω) = I(0 ≤ ω < 1) = I[0, 1), X2 = I[0, 1/2),
X3 = I[1/2, 1), X4 = I[0, 1/4), X5 = I[1/4, 1/2), . . . In other words,

Xn = I
[ k
2m

,
k + 1

2m
)
, m = blog2 nc, k = n− 2m, n = 1, 2, . . .

where b·c is the floor function (e.g., b5.8c = 5).

(a) Show that Xn
p→ 0.

(b) Explain why Xn does not converge to 0 almost surely. Hence conclude that convergence in
probability does not necessarily imply convergence almost surely.

(c) Recall this fact: if Yn
p→ Y , then there exists a sub-sequence of Yn that converges to Y almost

surely. Illustrate this fact using the example here.

(d) Recall Skorokhod’s representation theorem: if Yn
d→ Y , then there exists a sequence of random

variables {Y ∗
n } and Y ∗ on the same probability space such that Y ∗

n
d
= Yn, Y ∗ d

= Y , and Y ∗
n
a.s.→ Y ∗.

Illustrate this theorem using the example here. (Here we write X
d
= Y if X and Y have the same

distribution)

(e) Show that Xn → 0 in Lr-norm for any r > 0. (Recall Xn
Lr→ 0 if E|Xn|r → 0 for r > 0.)

(f) Give an example where L1-convergence holds while L2-convergence does not and explain. In other

words, give an example of Yn and Y such that Yn
L1→ Y but Yn

L2

6→ Y .
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5. U-statistics and projection

Given a random sample X1, . . . , Xn ∼ F . Define a U-statistic as

U =

(
n

r

)−1 ∑
1≤j1<···<jr≤n

h(Xj1 , . . . , Xjr ), (2)

which can be viewed as the sample average of h(Xj1 , . . . , Xjr ) over all possible permutations of indexes
1 ≤ j1 < · · · < jr ≤ n. The parameter of interest is θ = Eh(X1, . . . , Xr), where h is called a
kernel (a symmetric function over its inputs), and r ∈ N is called the order of the kernel. Assume
Eh2(X1, . . . , Xr) <∞.

(a) Choose r = 1 and h(x1) = x21. What is U and θ then?

(b) Show that U defined in (2) can be written as

U = E{h(X1, . . . , Xr) | X(1), . . . , X(n)},

where X(1), . . . , X(n) are order statistics for X1, . . . , Xn.

(c) Switch the topic to projection now - consider a general setting, where T is a random variable, S
is a linear space of random variables (including constants, with finite second moment), and we
say Ŝ is the projection of T on the space S if

(i) Ŝ ∈ S, (ii) E(T ) = EŜ and (iii) Cov(T − Ŝ, S) = 0 for every S ∈ S.

Now show that if Ŝ is the projection of T on the space S, then Var(T ) ≥ Var(Ŝ). In other words,
doing projection decreases the variance.

(d) Given two random variables X and Y on the same probability space. Explain why the conditional
expectation E(X | Y ) can be viewed as a projection based on part (c), in other words, verify the
three properties of projection (i) – (iii) in part (c).

(e) Now back to part (b), we can view U as a projection of h(X1, . . . , Xr). Why is U a better
estimator for θ than h(X1, . . . , Xr)? Explain.
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6. Decision theory

Consider a single observation X from a Bernoulli distribution, Bin(1, p), with parameter p ∈ [0, 1]. We
will use the squared error loss throughout this problem.

(a) Consider a prior p ∼ Beta(α, β), then we know the Bayes estimator is

δ =
α+X

α+ β + 1
, α > 0, β > 0. (3)

Find the (frequentist) risk for δ.

(b) Prove this general result: let θ be a k-dimensional parameter of interest, Θ ⊂ Rk be the parameter
space and π be a prior fully supported on Θ. If δπ is the Bayes estimator for π with finite Bayes
risk, then δπ is admissible. (Hint: proof by contradiction)

(c) Use the result in part (b) to explain why δ defined in (3) is admissible.

(d) Is X an extended (limiting) Bayes estimator in this example? Explain.

(e) Show that when α = β = 1/2, δ becomes an equalizer estimator (an estimator with constant risk,
i.e., the risk does not depend on the parameter).

(f) Now prove this result: if an equalizer rule is admissible, then it is minimax.

(g) Find a minimax estimator for p.
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