Second Year Exam - 220AB (Theory)
2019

This is a closed book and notes examination. You are to answer exactly 5 of the following 6 questions. Use
your time wisely. Clearly justify each step. The 5 questions you choose to answer will be worth equal credit.
If you attempt all 6 questions, your grade will be based on your 5 highest scores. Please write only on one
side of each page.

1. Let (92, F, P) be a probability space.

(a) Let X : Q@ — R be a function. Show that {w: X(w) < a} € F for all a € R is equivalent to
{w: a<X(w)<b}eFfioralla<b.

(b) Suppose X : Q — R is measurable. Construct a sequence of simple functions X, such that
X, — X almost surely. If you cannot find such a sequence then at least describe how simple functions
are defined in a measure-theoretic setting.

(c) State Monotone Convergence Theorem and Fatou’s Lemma.

(d) Deduce Fatou’s Lemma from Monotone Convergence Theorem.



2. Let H(x) = I(x > 0)(1+ x + 2?) where [ is the indicator function.

(a) Verify that H(x) is a generalized distribution function. That is, H (x) is real-valued, right continuous
and non-decreasing.

(b) Let g(x) = —1 for z € [0,2] and g(z) = 1 for € (2,3] and g(z) = 0 otherwise. Compute
Jz 9(x)dH (z) using the definition.

(c) Let G be non-decreasing and continuous. Use Fubini’s theorem to prove the following integration
by parts formula:

G(z)dH(x) = G(b)H(b) — G(a)H (a) — H(z)dG(z), —oo<a<b< o (1)
(a,b] (a,b]
Justify all steps.
(d) How would you revise your formula (1) if we do not assume G is continuous? Justify.

(e) Use your revised formula in part (d) to compute f( H(z)dH (z).

—-1,2]



3. Let Yi,...,Y,,... be identically distributed with mean u, variance ¢2 > 0 and finite E(Yj‘l). The
sample variance is defined as S, = Y1 | (Vi — Y;,)?/(n — 1) where Y,, = Y7 | V;/n. In parts (b) -(d)
we assume the Y;’s are iid.

(a) Show that (n —1)S, = > i, Y2 —nY,?

(b) Show that S,, — o2 almost surely as n — co. You must explain why o? is finite.

(c) State the joint asymptotic distribution of (3.1, Y;?/n,> 1| Yi/n)

(d) Use the Delta method to find the asymptotic distribution of S,,, suitably standardized.
(

e) Instead of assuming Y;’s are iid, let us assume they arise from a moving average process. Specifically,

suppose Y; = (Z; + Zj1+1)/2 with Z;’s being iid. Show that S,, — ¢ almost surely and identify the
constant c.



4. An example on convergence

Consider the Borel sigma field on © = [0,1) and the Lebesgue measure. For every w € €, define a
sequence of random variables X, : w — X, (w) as X;(w) = [(0 < w < 1) =1[0,1), Xo = I[0,1/2),
X5 =1[1/2,1), X4 =1[0,1/4), X5 =1[1/4,1/2),... In other words,

E k+1

Xo=1lom S

), m=logyn), k=n—-2" n=1,2...
where |-] is the floor function (e.g., [5.8] = 5).

(a) Show that X,, = 0.

(b) Explain why X,, does not converge to 0 almost surely. Hence conclude that convergence in
probability does not necessarily imply convergence almost surely.

(¢) Recall this fact: if ¥;, 2 Y, then there exists a sub-sequence of Y, that converges to ¥ almost
surely. Illustrate this fact using the example here.

(d) Recall Skorokhod’s representation theorem: if Y, 4 Y, then there exists a sequence of random
variables {Y,*} and Y* on the same probability space such that Y,* 4 Y, Y* 4 Y, and V¥ “3 Y.
Tllustrate this theorem using the example here. (Here we write X 2y if X and Y have the same
distribution)

(e) Show that X,, — 0 in L,-norm for any r > 0. (Recall X, Lo if E|X,|" — 0 for r > 0.)

(f) Give an example where L;-convergence holds while Lo-convergence does not and explain. In other

Lo
words, give an example of Y,, and Y such that Y, My but Y, AY.



5. U-statistics and projection

Given a random sample X1, ..., X,, ~ F. Define a U-statistic as

U:(Dl S (X, X)), (2)

1<j1<-<jr<n

which can be viewed as the sample average of h(Xj,,..., X}, ) over all possible permutations of indexes
1 <j; < - < jr < n. The parameter of interest is § = Eh(Xy,...,X,), where h is called a
kernel (a symmetric function over its inputs), and r € N is called the order of the kernel. Assume
EhQ(Xl, . ,XT) < 0.

(a) Choose 7 =1 and h(x;) = 22. What is U and 6 then?
(b) Show that U defined in (2) can be written as

U=E{h(X1,.. ., X,) | X1y Xy s

where X1y, ..., X(,) are order statistics for Xi,..., X,,.

(¢) Switch the topic to projection now - consider a general setting, where 7' is a random variable, S
is a linear space of random variables (including constants, with finite second moment), and we
say S is the projection of T" on the space S if

(i) S €8, (i) E(T) = ES and (iii) Cov(T — S, 5) = 0 for every S € S.

Now show that if S is the projection of T' on the space S, then Var(T) > Var(S). In other words,
doing projection decreases the variance.

(d) Given two random variables X and Y on the same probability space. Explain why the conditional
expectation E(X | Y) can be viewed as a projection based on part (c¢), in other words, verify the
three properties of projection (i) — (iii) in part (c).

(e) Now back to part (b), we can view U as a projection of h(Xi,...,X,). Why is U a better
estimator for 6 than h(Xy,...,X,)? Explain.



6. Decision theory

Consider a single observation X from a Bernoulli distribution, Bin(1, p), with parameter p € [0,1]. We
will use the squared error loss throughout this problem.

(a)

Consider a prior p ~ Beta(c, 8), then we know the Bayes estimator is

a+ X
= ——— 0 0. 3
T AT a>0,8> (3)

Find the (frequentist) risk for §.

Prove this general result: let f be a k-dimensional parameter of interest, © C R* be the parameter
space and 7 be a prior fully supported on ©. If §, is the Bayes estimator for 7 with finite Bayes
risk, then §, is admissible. (Hint: proof by contradiction)

Use the result in part (b) to explain why ¢ defined in (3) is admissible.
Is X an extended (limiting) Bayes estimator in this example? Explain.

Show that when o = 8 = 1/2, § becomes an equalizer estimator (an estimator with constant risk,
i.e., the risk does not depend on the parameter).

Now prove this result: if an equalizer rule is admissible, then it is minimax.

Find a minimax estimator for p.



