Second Year Exam - 220AB (Theory) 2019

This is a closed book and notes examination. You are to answer exactly 5 of the following 6 questions. Use your time wisely. Clearly justify each step. The 5 questions you choose to answer will be worth equal credit. If you attempt all 6 questions, your grade will be based on your 5 highest scores. Please write only on one side of each page.

1. Let (Ω, \mathcal{F}, P) be a probability space.

(a) Let $X : \Omega \to \mathbb{R}$ be a function. Show that $\{\omega : X(\omega) < a\} \in \mathcal{F}$ for all $a \in \mathbb{R}$ is equivalent to $\{\omega : a < X(\omega) \le b\} \in \mathcal{F}$ for all a < b.

(b) Suppose $X : \Omega \to \mathbb{R}$ is measurable. Construct a sequence of simple functions X_n such that $X_n \to X$ almost surely. If you cannot find such a sequence then at least describe how simple functions are defined in a measure-theoretic setting.

(c) State Monotone Convergence Theorem and Fatou's Lemma.

(d) Deduce Fatou's Lemma from Monotone Convergence Theorem.

2. Let $H(x) = I(x \ge 0)(1 + x + x^2)$ where I is the indicator function.

(a) Verify that H(x) is a generalized distribution function. That is, H(x) is real-valued, right continuous and non-decreasing.

(b) Let g(x) = -1 for $x \in [0, 2]$ and g(x) = 1 for $x \in (2, 3]$ and g(x) = 0 otherwise. Compute $\int_{\mathbb{R}} g(x) dH(x)$ using the definition.

(c) Let G be non-decreasing and continuous. Use Fubini's theorem to prove the following integration by parts formula:

$$\int_{(a,b]} G(x)dH(x) = G(b)H(b) - G(a)H(a) - \int_{(a,b]} H(x)dG(x), \quad -\infty < a < b < \infty$$
(1)

Justify all steps.

(d) How would you revise your formula (1) if we do not assume G is continuous? Justify.

(e) Use your revised formula in part (d) to compute $\int_{(-1,2]} H(x) dH(x)$.

- 3. Let Y_1, \ldots, Y_n, \ldots be identically distributed with mean μ , variance $\sigma^2 > 0$ and finite $E(Y_j^4)$. The sample variance is defined as $S_n = \sum_{i=1}^n (Y_i \bar{Y}_n)^2 / (n-1)$ where $\bar{Y}_n = \sum_{i=1}^n Y_i / n$. In parts (b) -(d) we assume the Y_j 's are iid.
 - (a) Show that $(n-1)S_n = \sum_{i=1}^n Y_i^2 n\bar{Y}_n^2$
 - (b) Show that $S_n \to \sigma^2$ almost surely as $n \to \infty$. You must explain why σ^2 is finite.
 - (c) State the joint asymptotic distribution of $(\sum_{i=1}^n Y_i^2/n, \sum_{i=1}^n Y_i/n)$
 - (d) Use the Delta method to find the asymptotic distribution of S_n , suitably standardized.

(e) Instead of assuming Y_j 's are iid, let us assume they arise from a moving average process. Specifically, suppose $Y_j = (Z_j + Z_{j+1})/2$ with Z_j 's being iid. Show that $S_n \to c$ almost surely and identify the constant c.

4. An example on convergence

Consider the Borel sigma field on $\Omega = [0, 1)$ and the Lebesgue measure. For every $\omega \in \Omega$, define a sequence of random variables $X_n : \omega \to X_n(\omega)$ as $X_1(\omega) = I(0 \le \omega < 1) = I[0, 1), X_2 = I[0, 1/2), X_3 = I[1/2, 1), X_4 = I[0, 1/4), X_5 = I[1/4, 1/2), \dots$ In other words,

$$X_n = I\left[\frac{k}{2^m}, \frac{k+1}{2^m}\right), \ m = \lfloor \log_2 n \rfloor, \ k = n - 2^m, \ n = 1, 2, \dots$$

where $\lfloor \cdot \rfloor$ is the floor function (e.g., $\lfloor 5.8 \rfloor = 5$).

- (a) Show that $X_n \xrightarrow{p} 0$.
- (b) Explain why X_n does not converge to 0 almost surely. Hence conclude that convergence in probability does not necessarily imply convergence almost surely.
- (c) Recall this fact: if $Y_n \xrightarrow{p} Y$, then there exists a sub-sequence of Y_n that converges to Y almost surely. Illustrate this fact using the example here.
- (d) Recall Skorokhod's representation theorem: if $Y_n \xrightarrow{d} Y$, then there exists a sequence of random variables $\{Y_n^*\}$ and Y^* on the same probability space such that $Y_n^* \xrightarrow{d} Y_n$, $Y^* \xrightarrow{d} Y$, and $Y_n^* \xrightarrow{a.s.} Y^*$. Illustrate this theorem using the example here. (Here we write $X \xrightarrow{d} Y$ if X and Y have the same distribution)
- (e) Show that $X_n \to 0$ in L_r -norm for any r > 0. (Recall $X_n \xrightarrow{L_r} 0$ if $E|X_n|^r \to 0$ for r > 0.)
- (f) Give an example where L_1 -convergence holds while L_2 -convergence does not and explain. In other words, give an example of Y_n and Y such that $Y_n \xrightarrow{L_1} Y$ but $Y_n \xrightarrow{L_2} Y$.

5. U-statistics and projection

Given a random sample $X_1, \ldots, X_n \sim F$. Define a U-statistic as

$$U = {\binom{n}{r}}^{-1} \sum_{1 \le j_1 < \dots < j_r \le n} h(X_{j_1}, \dots, X_{j_r}),$$
(2)

which can be viewed as the sample average of $h(X_{j_1}, \ldots, X_{j_r})$ over all possible permutations of indexes $1 \leq j_1 < \cdots < j_r \leq n$. The parameter of interest is $\theta = Eh(X_1, \ldots, X_r)$, where h is called a kernel (a symmetric function over its inputs), and $r \in \mathbb{N}$ is called the order of the kernel. Assume $Eh^2(X_1, \ldots, X_r) < \infty$.

- (a) Choose r = 1 and $h(x_1) = x_1^2$. What is U and θ then?
- (b) Show that U defined in (2) can be written as

$$U = E\{h(X_1, \dots, X_r) \mid X_{(1)}, \dots, X_{(n)}\},\$$

where $X_{(1)}, \ldots, X_{(n)}$ are order statistics for X_1, \ldots, X_n .

(c) Switch the topic to projection now - consider a general setting, where T is a random variable, S is a linear space of random variables (including constants, with finite second moment), and we say \hat{S} is the projection of T on the space S if

(i)
$$S \in S$$
, (ii) $E(T) = ES$ and (iii) $Cov(T - S, S) = 0$ for every $S \in S$.

Now show that if \hat{S} is the projection of T on the space S, then $\operatorname{Var}(T) \geq \operatorname{Var}(\hat{S})$. In other words, doing projection decreases the variance.

- (d) Given two random variables X and Y on the same probability space. Explain why the conditional expectation $E(X \mid Y)$ can be viewed as a projection based on part (c), in other words, verify the three properties of projection (i) (iii) in part (c).
- (e) Now back to part (b), we can view U as a projection of $h(X_1, \ldots, X_r)$. Why is U a better estimator for θ than $h(X_1, \ldots, X_r)$? Explain.

6. Decision theory

Consider a single observation X from a Bernoulli distribution, Bin(1, p), with parameter $p \in [0, 1]$. We will use the squared error loss throughout this problem.

(a) Consider a prior $p \sim \text{Beta}(\alpha, \beta)$, then we know the Bayes estimator is

$$\delta = \frac{\alpha + X}{\alpha + \beta + 1}, \quad \alpha > 0, \beta > 0.$$
(3)

Find the (frequentist) risk for δ .

- (b) Prove this general result: let θ be a k-dimensional parameter of interest, $\Theta \subset \mathbb{R}^k$ be the parameter space and π be a prior fully supported on Θ . If δ_{π} is the Bayes estimator for π with finite Bayes risk, then δ_{π} is admissible. (Hint: proof by contradiction)
- (c) Use the result in part (b) to explain why δ defined in (3) is admissible.
- (d) Is X an extended (limiting) Bayes estimator in this example? Explain.
- (e) Show that when $\alpha = \beta = 1/2$, δ becomes an equalizer estimator (an estimator with constant risk, i.e., the risk does not depend on the parameter).
- (f) Now prove this result: if an equalizer rule is admissible, then it is minimax.
- (g) Find a minimax estimator for p.