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ST210 Qualifying Exam, 2022

As one of the pioneer of modern science, Galileo was among the first scientists who studied the
laws of motion. During his inquiry on the role of inertia in motion (which finally led to Newton’s
first law of motion), he constructed an apparatus shown in the sketch below.
More specifically, he placed an inclined plane on a table, which was set at 500 punti above the floor
(one punto=169/190 millimeter). Then, he released an ink-covered ball at di↵erent heights above
the table, and measured the horizontal distance between the table and the ink spot left by the ball
falling on the floor.

The measurements are displayed in the following table:

Horizontal Distance Initial Height

(punti) (punti)

253 100
337 200
395 300
451 450
495 600
534 800
573 1000

In this problem, we want to explore the relationship between the initial height and the horizontal
distance. Answer the following questions. (In order to receive full credit, please also include the

formula/reasoning you use for obtaining the results):

Daniel Gillen
1

Daniel Gillen

Daniel Gillen
1.



(a) First we will employ a simple regression model to analyze this data set:

DISTANCE = �0 + �1HEIGHT+ ".

The output of the regression model in R and the residual plot are displayed below:

lm(formula = DISTANCE ~ HEIGHT)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 269.71246 24.31239 11.094 0.000104 ***

HEIGHT 0.33334 0.04203 7.931 0.000513 ***

---

Residual standard error: 33.68 on 5 degrees of freedom

Multiple R-squared: ---, Adjusted R-squared: 0.9116

F-statistic: 62.91 on 1 and 5 DF, p-value: 0.0005132

Based on the output, do you believe that the simple linear regression proposed above is valid?
If not, which assumptions are violated? State your reasoning.
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(b) Please provide the 95% confidence interval for �̂1.

(c) State the null hypothesis of the F test listed in the R output in (a), and interpret the result
of the test.

(d) Based on the R output above, calculate the R2 value.

(e) Now we fit the data with a more complicated model, a model also know as polynomial regres-
sion. In particular, we will add another predictor: Height2, the square of variable Height. We
then fit the following regression model:

DISTANCE = �0 + �1HEIGHT+ �2HEIGHT
2 + ".

The above polynomial regression can be carried out easily in R: we only need to create a new
variable HEIGHT SQUARE that represents the square of Height, and then fit the response
variable against both Height and HEIGHT SQUARE using the techniques of multiple linear
regression. The R output of the corresponding regression analysis is reported below:

lm(formula = DISTANCE ~ HEIGHT + HEIGHT_SQUARE)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.999e+02 1.676e+01 11.928 0.000283 ***

HEIGHT 7.083e-01 7.482e-02 9.467 0.000695 ***
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HEIGHT_SQUARE -3.437e-04 6.678e-05 -5.147 0.006760 **

---

Residual standard error: 13.64 on 4 degrees of freedom

Multiple R-squared: 0.9903, Adjusted R-squared: 0.9855

F-statistic: 205 on 2 and 4 DF, p-value: 9.333e-05

Construct a general F-test to show that the introduction of the squared term does improve
the fit significantly compared to the simple linear regression with only Height. Calculate the
test statistic and explicitly compute the degrees of freedom.

(f) It is natural for us to think about adding more variables. For example, we could add an-
other polynomial term, HEIGHT CUBIC, that represents Height

3. Then, we can fit a mul-
tiple regression model that includes all the three predictors: HEIGHT, HEIGHT SQUARE,
HEIGHT CUBIC. We display the ANOVA table below:

Analysis of Variance Table

Response: DISTANCE

Df SSR Mean Sq

HEIGHT 1 71351 71351

HEIGHT_SQUARE 1 4927 4927

HEIGHT_CUBIC 1 696 696

Residuals 3 48 16

A general F-test shows that the new predictor, HEIGHT CUBIC, should be added to the
model. However, the best model is often the result of a trade-o↵ between goodness of fit and
model simplicity. Therefore, we consider the adjusted R-squared values of all the three models:
(M1) simple linear regression, (M2) quadratic and (M3) cubic polynomial regression. Please,
report the adjusted R2 for the three models and then discuss your selection of the best model.

Page 4

Daniel Gillen
4

Daniel Gillen

Daniel Gillen
(End of Problem 1)



Methods Qualifying Exam - 2022 - Stat 211

2. In this problem, we will consider the results of a teratology experiment in which female rats on iron-
deficient diets were randomly assigned to one of the following four groups:

I : placebo injection

II : iron supplement injections on days 7 and 10 of the experiment

III : iron supplement injections on days 0 and 7 of the experiment

IV : iron supplement injections weekly for three weeks

58 total rats were made pregnant (this defined the start of the experiment) and then sacrificed after
three weeks. At that time, the total number of dead fetuses was counted for each litter. Experimenters
are interested in the probability of a dead fetus conditional upon treatment group.

(a) To begin, let us suppose that for each litter one fetus was selected randomly and labeled as alive
or dead. Thus we observe independent responses y1, y2, . . . , y58, where yi = 1 if the fetus was dead
at the time the mother was sacrificed and 0 otherwise, i = 1, . . . , 58. Based upon this information,
suggest an appropriate probability model for the response variable and write down a generalized
linear regression model that addresses the scientific question of interest.

(b) Provide a precise interpretation of each parameter in the regression model you formulated in (a).

(c) In order to obtain parameter estimates and draw inference for the above regression model, one
could turn to the theory of generalized linear models provided that the probability distribution
of the outcome is a member of the exponential dispersion family.

i. Write down the form of the probability density function (pdf) for a member of the exponential
dispersion family with canonical location parameter ✓, dispersion parameter a(�) and mean
b
0(✓).

ii. Show that the probability model that you proposed for the teratology experiment is a member
of the exponential dispersion family and identify each of the parts of the pdf.

(d) Consider a regression model of the form g(µi) ⌘ ⌘i = Xi�, where µi denotes the mean of the
response variable of interest, Xi is the i-th row of the design matrix, � is a vector of regression
parameters, and g(·) is a di↵erentiable function linking µi to the linear predictor, ⌘i. Using a
generic likelihood pertaining to a member of the exponential dispersion family (in the form pro-
vided for (c-i)), derive the score equation used to obtain maximum likelihood estimates of �.

(e) Using the regression model you specified in (a) write down the score equation for estimating the
model parameters (you may simply plug the relevant parts into the generic score equation you
derived in (d)). Briefly explain how maximum likelihood estimates for the model parameters could
be obtained in practice.

(f) To begin to address the scientific question of interest, investigators wish to test the hypothesis
that the probability of a dead fetus is the same across all treatment groups. Precisely state three
di↵erent test statistics the could be used for testing this hypothesis given the regression model
you formulated in (a) and state the asymptotic distribution of each statistic. Be sure to carefully
define the components of each statistic you present.
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Table 1: Observed counts of (litter size, number dead) for the teratology study.

Group Response counts (Litter Size, Number Dead)

I (10,1) (11,4) (12,9) (4,4) (10,10) (11,9) (9,9) (11,11) (10,10) (10,7) (12,12) (10,9)
(8,8) (11,9) (6,4) (9,7) (14,14) (12,7) (11,9) (13,8) (14,5) (10,10) (12,10) (13,8) (10,10)
(14,3) (13,13) (4,3) (8,8) (13,5) (12,12)

II (10,1) (3,1) (13,1) (12,0) (14,4) (9,2) (13,2) (16,1) (11,1) (4,0) (1,0) (12,0)

III (8,0) (11,1) (14,0) (14,1) (11,0)

IV (3,0) (13,0) (9,2) (17,2) (15,0) (2,0) (14,1) (8,0) (6,0) (17,0)

(g) Since most litters are comprised of more than one fetus, the above analysis throws away a great
deal of information. Suppose that we wish to use the information on all fetuses within a litter,
where the observed data are now given in Table 1. Figure 1 displays four diagnostic plots (with
corresponding scatterplot smoothers) produced after adding the data on the rest of each of the
litters and fitting a GLM to the data assuming all observations were independent. Do any of the
plots suggest a problem(s) with the model? Explain and describe implications of the problem(s).

(h) One approach to the analysis that includes all available data on each litter is to suppose that
fetuses within a litter are correlated and that litters are independent. One could then consider
the total number of dead fetuses per litter as the outcome variable. For a simple formaliza-
tion, let Yij and Yik denote the response of fetus i and fetus k within litter i and suppose that
corr(Yij , Yik) = ⇢, j, k = 1, . . . , ni, j 6= k, i = 1, . . . , 58. In this case, we could consider the
binomial outcome Yi =

Pni

j=1 Yij as the response variable. Derive the mean and variance of Yi.

(i) A quasi-binomial regression model would assume Var[Yi] = �µi(1 � µi)/ni where µi = E[Yi]
and � could be estimated from the model residuals. Suppose that in fact corr(Yij , Yik) = ⇢,
j, k = 1, . . . , ni, j 6= k, i = 1, . . . , 58 and that litters are independent. Using your result from
(h) and the observed data given in Table 1, comment on the validity of the quasi-binomial model
in this case. If you find the quasi-binomial model unacceptable, what other approach might you
take to model these data in order to obtain consistent parameter estimates and valid inference?
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Figure 1: Residual diagnostic plots from model fitted to data in Table 1.
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3. In the Vaccine Preparedness Study (VPS) a sample of 5,000 high risk HIV negative participants were
enrolled and followed prospectively for 18 months. At baseline, participants were asked to report on
the number of partners they had in the last six months that were of unknown HIV serostatus. Suppose
it is reasonable to assume Zi, the (actual) number of partners, is distributed as Poisson with a mean
�(Xi), that may depend on covariates Xi. Interest is in whether drug and alcohol use correlate with
(predict) the number of partners. Let Yi be the reported number of partners and let Xi be covariates
of interest.

(a) Suppose we are concerned that a fraction of the participants might be uncomfortable reporting
sensitive information and will choose to simply report Yi = 0 even though Zi > 0. Otherwise,
participants report correctly, Yi = Zi. Let ⇡(Xi) denote the probability that Yi = 0 when Zi > 0
for a subject with covariate Xi. Describe a mixture model for Yi and derive the mean and vari-
ance of Yi in terms of ⇡(Xi) and �(Xi).

(b) Suppose we are truly interested in the mean model log(E[Zi]) = log(�i) = �0+�1Xi, but having
only observed Yi we fit the model log(E[Yi]) = �0 + �1Xi. Further suppose that we obtain
estimates �̂0 and �̂1 by fitting a standard Poisson regression to the observed data.

i Under what conditions, if any, will �̂0 be a consistent estimator of �0? Justify.

ii Under what conditions, if any, will �̂1 be a consistent estimator of �1? Justify.

(c) Again consider the scenario from Part (b). Under what conditions are the confidence intervals
for parameters in �1 which result from the standard Poisson regression asymptotically valid (ie.
in large samples they obtain the correct coverage probability)? Justify. In cases where these
confidence intervals are not asymptotically valid, if any, suggest a method which can be used to
obtain confidence intervals with asymptotically correct coverage probability.

For the remaining questions that are based upon an analysis of the VPS data you may assume that
under-reporting of past partners is not an issue...

Regression summaries (coe�cient estimates and corresponding covariance matrices) for the VPS base-
line data (a subset of 1000 men) are given on the following pages. We are primarily concerned with
whether drug and alcohol use are associated with high risk behavior (as measured by the number of
unknown HIV status partners an individual had in the past 6 months). The following mean model is
of interest:

log(E[Yi]) = �0 + �1age.ci + �2drugsi + �3alcoholi + �4drugsi ⇥ alcoholi

where

• age.c = age in years at entry into the study (centered to the sample mean of 26 years)

• drugs = 0 if no drug use; 1 if any drug use

• alcohol = 0 is alcohol use is < heavy; 1 if alcohol use is heavy

(d) Consider models (1) and (2). Model (1) presents results from a standard Poisson regression
analysis, and model (2) presents results from a quasi-Poisson (or scale overdispersion) regression
analysis. Based solely upon these results which analysis would you prefer to report and why?

(e) Based upon the model that you would choose to report, estimate the mean number of unknown
HIV status partners in the past 6 months for an individual of age 26, who uses drugs and does
not use alcohol. Provide a 95% confidence interval for this quantity.
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(f) Provide a precise interpretation of �4 (or some suitable transformation) in language understand-
able to a statistical layman. Based upon the model that you would choose to report, what is your
estimate of this quantity? What are the implications of this estimate on the scientific question of
interest?

(g) Consider testingH0 : �4 = 0 using a Deviance test based upon the quasi-Poisson model. Model (3)
presents the output from a reduced quasi-Poisson fit omitting the drugs by alcohol interaction.
Using the results from models (2) and (3) calculate the appropriate Deviance statistic for this
test. What is the asymptotic distribution of this test statistic?
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APPENDIX 2a

(1) STANDARD POISSON ANALYSIS OF THE VPS DATA

> fit <- glm( y ~ age.c + drugs + alcohol + drugs:alcohol, family=poisson )
> summary( fit )

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.291126 0.019751 65.371 < 2e-16 ***
age.c 0.009411 0.003229 2.914 0.00356 **
drugs 0.388216 0.051819 7.492 6.79e-14 ***
alcohol -0.007742 0.060748 -0.127 0.89858
drugs:alcohol 0.349414 0.083927 4.163 3.14e-05 ***

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3339.6 on 999 degrees of freedom
Residual deviance: 2971.0 on 995 degrees of freedom

> round( summary( fit )$cov.scaled, 4 )
(Intercept) age.c drugs alcohol drugs:alcohol

(Intercept) 4e-04 0 -0.0004 -0.0004 0.0004
age.c 0e+00 0 0.0000 0.0000 0.0000
drugs -4e-04 0 0.0027 0.0004 -0.0027
alcohol -4e-04 0 0.0004 0.0037 -0.0037
drugs:alcohol 4e-04 0 -0.0027 -0.0037 0.0070
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(2) QUASI-POISSON ANALYSIS OF THE VPS DATA

> fit.quasi <- glm( y ~ age.c + drugs + alcohol + drugs:alcohol, family=quasipoisson )
> summary( fit.quasi )

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.291126 0.032584 39.624 < 2e-16 ***
age.c 0.009411 0.005327 1.766 0.0776 .
drugs 0.388216 0.085489 4.541 6.28e-06 ***
alcohol -0.007742 0.100220 -0.077 0.9384
drugs:alcohol 0.349414 0.138460 2.524 0.0118 *

(Dispersion parameter for quasipoisson family taken to be 2.721754)

Null deviance: 3339.6 on 999 degrees of freedom
Residual deviance: 2971.0 on 995 degrees of freedom

> round( summary( fit.quasi )$cov.scaled, 4 )
(Intercept) age.c drugs alcohol drugs:alcohol

(Intercept) 0.0011 0e+00 -0.0011 -0.0011 0.0010
age.c 0.0000 0e+00 -0.0001 0.0000 0.0001
drugs -0.0011 -1e-04 0.0073 0.0011 -0.0073
alcohol -0.0011 0e+00 0.0011 0.0100 -0.0100
drugs:alcohol 0.0010 1e-04 -0.0073 -0.0100 0.0192

(3) QUASI-POISSON ANALYSIS OF THE VPS DATA (REDUCED MODEL)

> fit.quasi.red <- glm( y ~ drugs + alcohol + drugs:alcohol, family=quasipoisson )
> summary( fit.quasi.red )

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.270823 0.032064 39.634 < 2e-16 ***
age.c 0.008058 0.005328 1.512 0.13077
drugs 0.522743 0.064252 8.136 1.21e-15 ***
alcohol 0.171479 0.066346 2.585 0.00989 **

(Dispersion parameter for quasipoisson family taken to be 2.750395)

Null deviance: 3339.6 on 999 degrees of freedom
Residual deviance: 2988.9 on 996 degrees of freedom
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Problem # 4 - Stats 212. The world-renowned Dr. Pepper of UCI is interested in evalu-

ating the e�cacy of an innovative intervention they have developed to treat soda addic-

tion. To understand the e�cacy of the intervention, they consider a longitudinal clinical

trial study where the intervention (coded “1” below ) is compared to the standard of

care (coded “0” below). Dr. Pepper is interested in investigating if the intervention

leads to an increase in the ability to resist the temptation of drinking sodas, based on

a continuous “Resist” score they have previously developed. Therefore, they enroll 200

participants (100 assigned to control, and 100 assigned to the new intervention arm)

and then they compute the “Resist” score based on surveys and other assessments at

baseline (week 0) and at follow-up visits at weeks 1, 2, and 3.

For all participants, information about gender is also recorded (with male coded “0”

below and female “1”).

Figure 1 in the Appendix reports a plot with the individual profiles (“spaghetti plot”)

as well as the weekly means of the resist scores from the individuals assigned to the two

interventions.

1. For the following questions, you can refer to the code in Part 1 of the Appendix.

(a) Write the mathematical form of the model fit in mod1.ML. Write the model in

matrix form (the assumed model, not the fitted model).

Clearly define any variables used, and write out the elements of each vector or

matrix in the model. Identify which terms in the model are fixed and which are

random. State all model assumptions.

(b) Provide the (general) expression of the maximum likelihood estimators of the fixed-

e↵ects parameters in a linear mixed e↵ects model. Discuss their asymptotic prop-

erties and any assumption required for their validity.

(c) Based on the estimated coe�cients in mod1.ML, determine if there is enough evi-

dence of a treatment e↵ect over time. Motivate your answer.

(d) Dr. Sprite is a good collaborator of Dr. Pepper. After reviewing the statistical

report, Dr. Sprite suggests that Dr. Pepper should perform a formal likelihood ratio

test using restricted maximum likelihood to assess the significance of the treatment

e↵ect over time. Discuss why or why not this may be a good suggestion.

(e) Discuss a test to determine if the mixed e↵ects should consider a random slope or

not. Clearly specify the hypotheses being tested, the estimation method and the

relevant test statistic.

2. For the following questions, you may consider the output reported in Part 2 of the

Appendix.

(a) Write the generalized estimating equation solved to obtain the estimates reported

in model mod2.ar1. Clearly state all the assumptions of the model, in particular

all the assumptions on the mean and variance-covariance structure. Identify the

corresponding estimates in the reported output.
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(b) Propose a test for assessing if the intervention leads to significantly di↵erent “Resist”

scores than the standard of care. Clearly specify (and justify) the hypotheses being

tested, the hypothesis testing approach and the relevant test statistic.

(c) With reference to the Gauss-Markov theorem for correlated data, discuss under

what conditions the estimator �̂GEE from the GEE fit has minimal variance among

all the linear estimators.

(d) In Pan (2001) On the robust variance estimator in generalised estimating equations,

Biometrika 88(3): 901-906 it is proposed an alternative estimator for the variance

of the outcome, say Cov (yi), in the expression of the sandwich estimator of the

variance of �̂GEE.

More specifically, Pan’s alternate formulation changes the covariance of the outcome

term to

Cov (yi) = A1/2
i

 
1

m

mX

i=1

A�1/2
i SiS

T
i A

�1/2
i

!
A1/2

i

with Ai = diag {v (µi1) , . . . , v (µin)} and Si = yi � µi.

Explain the di↵erence between Pan’s formulation and the usual sandwich estimator

of the variance. Discuss possible advantages of the new formulation.

(e) For large samples, do you think there will be a significant di↵erence from the usual

calculation?

3. For the following question, you may consider also the output reported in Part 3 of

the Appendix.

(a) Dr. Sprite suggests that the “Resist” score should be dichotomized. Hence, they

suggest to fit both a conditional and a marginal model using the newly created

dichotomized response. Discuss how the interpretation of the coe�cients change in

the new models, paying particular attention to the di↵erences between the condi-

tional and the marginal formulation. How would you expect the estimates in the

conditional model to compare with respect to those in the marginal model?

4. For the following questions, you may consider the output reported in Part 4 of the

Appendix.

(a) Dr. Pepper notices that the data are a↵ected by monotone dropout, that is some

subjects stop to come to a follow-up visit and do not return in future visits. They

believe that the dropout is more likely for males and it may also be associated to low

“Resist” scores recorded at previous visits for those subject. Dr. Sprite suggests this

may pose a problem for the validity of some of the methods used above. Identify the

type of missing data mechanism discovered by Dr. Pepper. Then, briefly discuss the

possible e↵ects it may have on the estimates of the conditional and marginal models

considered in the previous points, and some ways to remediate possible biases.

(b) Based on the output of mod4.gee in the Appendix, do you believe that Dr. Pepper

was justified in their assessment about the missing data mechanism? Justify your

answer.
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Appendix - Problem 4
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Mean Resist Score by Intervention Arm

Part 1
mod1.ML

mod1.ML=lme(response ~ week*treatment, data=dati, random = ~ 1 + week |id, method="ML")

summary(mod1.ML)

## Linear mixed-effects model fit by maximum likelihood

## Data: dati

## AIC BIC logLik

## 395.6526 433.1295 -189.8263

##

## Random effects:

## Formula: ~1 + week | id

## Structure: General positive-definite, Log-Cholesky parametrization

## StdDev Corr

## (Intercept) 0.16456137 (Intr)

## week 0.06738444 -0.598

## Residual 0.27329957

##

## Fixed effects: response ~ week * treatment

## Value Std.Error DF t-value p-value

## (Intercept) 1.0607155 0.02824254 598 37.55737 0.0000

## week -0.0192425 0.01399181 598 -1.37527 0.1696

## treatment -0.0540299 0.03994099 198 -1.35274 0.1777

## week:treatment 0.0529127 0.01978741 598 2.67406 0.0077

## Correlation:

## (Intr) week trtmnt

## week -0.738

## treatment -0.707 0.522

## week:treatment 0.522 -0.707 -0.738

##

## Standardized Within-Group Residuals:

## Min Q1 Med Q3 Max

## -3.0893331721 -0.5936415213 0.0005123469 0.6003593537 2.8921253882
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##

## Number of Observations: 800

## Number of Groups: 200

Part 2
mod2.ar1

library(geepack)

mod2.ar1=geeglm(response ~ week*treatment, data=dati, family="gaussian", id=id, corstr="ar1")

summary(mod2.ar1)

##

## Call:

## geeglm(formula = response ~ week * treatment, family = "gaussian",

## data = dati, id = id, corstr = "ar1")

##

## Coefficients:

## Estimate Std.err Wald Pr(>|W|)

## (Intercept) 1.06205 0.02888 1352.691 < 2e-16 ***

## week -0.01848 0.01469 1.583 0.20831

## treatment -0.05906 0.03919 2.271 0.13184

## week:treatment 0.05299 0.01938 7.477 0.00625 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Correlation structure = ar1

## Estimated Scale Parameters:

##

## Estimate Std.err

## (Intercept) 0.09779 0.005185

## Link = identity

##

## Estimated Correlation Parameters:

## Estimate Std.err

## alpha 0.2576 0.04502

## Number of clusters: 200 Maximum cluster size: 4

Part 3
mod3.glmer

library(lme4)

## Loading required package: Matrix

##

## Attaching package: ’Matrix’

## The following objects are masked from ’package:tidyr’:

##

## expand, pack, unpack

##

## Attaching package: ’lme4’

## The following object is masked from ’package:nlme’:

##

## lmList

mod3.glmer=glmer(response.dico ~ week*treatment+(1|id),data=dati.dico,

family=binomial)

summary(mod3.glmer)

## Generalized linear mixed model fit by maximum likelihood (Laplace

## Approximation) [glmerMod]

## Family: binomial ( logit )

## Formula: response.dico ~ week * treatment + (1 | id)

## Data: dati.dico

##

## AIC BIC logLik deviance df.resid

## 1102.1 1125.6 -546.1 1092.1 795
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##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -1.397 -0.984 0.708 0.837 1.105

##

## Random effects:

## Groups Name Variance Std.Dev.

## id (Intercept) 0.351 0.593

## Number of obs: 800, groups: id, 200

##

## Fixed effects:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.2046 0.1849 1.11 0.27

## week -0.0349 0.0934 -0.37 0.71

## treatment -0.1714 0.2614 -0.66 0.51

## week:treatment 0.1812 0.1330 1.36 0.17

##

## Correlation of Fixed Effects:

## (Intr) week trtmnt

## week -0.760

## treatment -0.707 0.537

## week:trtmnt 0.535 -0.703 -0.758

mod3.gee

mod3.gee=geeglm(response.dico ~ week*treatment,data=dati.dico,

family = "binomial",

id = id, corstr = "exchangeable")

summary(mod3.gee)

##

## Call:

## geeglm(formula = response.dico ~ week * treatment, family = "binomial",

## data = dati.dico, id = id, corstr = "exchangeable")

##

## Coefficients:

## Estimate Std.err Wald Pr(>|W|)

## (Intercept) 0.1885 0.1793 1.10 0.29

## week -0.0322 0.0939 0.12 0.73

## treatment -0.1574 0.2546 0.38 0.54

## week:treatment 0.1663 0.1331 1.56 0.21

##

## Correlation structure = exchangeable

## Estimated Scale Parameters:

##

## Estimate Std.err

## (Intercept) 1 0.00944

## Link = identity

##

## Estimated Correlation Parameters:

## Estimate Std.err

## alpha 0.0918 0.0359

## Number of clusters: 200 Maximum cluster size: 4

Part 4
mod3.wgee

library(wgeesel)

mod4.wgee= wgee (response.dico ~ week*treatment,data=dati.dico, family = "binomial",

id = id, corstr = "exchangeable", scale = NULL, mismodel =R ~ sex + lag1y)

summary(mod4.wgee)

## Call:

## wgee(model = response.dico ~ week * treatment, data = dati.dico,

## id = id, family = "binomial", corstr = "exchangeable", scale = NULL,

## mismodel = R ~ sex + lag1y)
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##

## Estimates Robust SE z value Pr(>|z|)

## (Intercept) 0.12797 0.18965 0.67 0.50

## week 0.04804 0.10991 0.44 0.66

## treatment -0.00189 0.26569 -0.01 0.99

## week:treatment 0.06186 0.15963 0.39 0.70

##

## Estimated Scale Parameter: 1.26

##

## Estimated Correlation: 0.0955

summary(mod4.wgee$mis_fit)

##

## Call:

## glm(formula = mismodel, family = binomial(), data = data[adjusted_idx,

## ])

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.904 -1.435 0.729 0.795 1.024

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.303 0.327 0.93 0.354

## sex 0.212 0.188 1.13 0.259

## lag1y 0.636 0.299 2.13 0.033 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 685.57 on 599 degrees of freedom

## Residual deviance: 679.65 on 597 degrees of freedom

## AIC: 685.6

##

## Number of Fisher Scoring iterations: 4
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(End of Problem 4)




