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Overview

Overview
I neuroimaging analysis is a super exciting area, because

I scientifically, a battery of important but challenging neurological
disorders, e.g., Alzheimer’s disease (AD), attention deficit hyperactivity
disorder (ADHD), autism spectrum disorder (ASD), as well as normal
aging

I statistically, an array of diverse statistical problems, constantly
demanding new models, theory, algorithms

I large public neuroimaging databases are becoming available
I not overly crowded, yet
I even my in-laws got interested in what I am doing...
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Overview

Overview
I imaging modalities:

I anatomical magnetic resonance imaging (MRI), functional magnetic
resonance imaging (fMRI), positron emission tomography (PET),
electroencephalography (EEG), . . .

I a unifying form: multidimensional array, a.k.a. tensor
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Overview

Overview
I neuroimaging problems under investigation:

I tensor regression
I tensor predictor regression
I tensor response regression

I brain connectivity analysis
I graphical model estimation (undirected, directed, Gaussian,

non-Gaussian, static, dynamic)
I graph inference
I graph based regression (association) analysis

I multimodal neuroimaging analysis
I integrative classification
I correlated region identification and inference

I more topics
I longitudinal imaging analysis
I imaging genetics
I imaging causal inference

I pick up another new topic here?
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Overview

Motivation
I attention deficit hyperactivity disorder (ADHD) study:

I one of the most commonly diagnosed child-onset neurodevelopmental
disorders, with an estimated childhood prevalence of 5 – 10% worldwide

I 776 subjects: 285 combined ADHD subjects and 491 normal controls
I anatomical MRI images were acquired and preprocessed
I MRI is in the form of 3D array, 256× 198× 256

I autism spectrum disorder (ASD) study:
I an increasingly prevalent neurodevelopmental disorder; 1 in 68

american children according to CDC in 2015
I 795 subjects: 362 ASD subjects and 433 normal controls
I functional MRI images were acquired and preprocessed into 2 forms
I fractional amplitude of low-frequency fluctuations (fALFF), which

characterizes the intensity of spontaneous brain activities, and is in the
form of 3D array, 91× 109× 91

I partial correlation between brain regions of interest, which describes
the conditional dependency and synchronization of brain systems, and
is in the form of 2D symmetric matrix, 116× 116
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Overview

Motivation
I scientific question of interest:

I understand the change of the tensor image or brain connectivity
pattern as the predictors such as disease status varies, after adjusting
for the demographical and other variables

I identify brain regions exhibiting different patterns across subject groups
— "differentially expressed regions"

I statistical formulation: tensor response regression
I predictors: binary diagnostic status, age, gender, . . .
I response: 3D MRI, 3D fALFF, 2D symmetric connectivity matrix
I challenges: extremely high dimensionality and small sample size;

complex data structure

I solution I: generalized sparsity and envelope approach
I solution II: sparsity and low-rankness
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Tensor response regression

Generalized sparsity and envelope
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Tensor response regression

Model
I model:

Y = B ×(D+1) X + ε

I Y ∈ IRr1×···×rD = Dth-order array-valued response; e.g., MRI scan
I X ∈ IRp = group indicator, plus additional covariates like age, gender
I B ∈ IRr1×···×rD×p = (D + 1)th-order coefficient tensor that captures

the interrelation between Y and X , and is our parameter of interest
I ×(m+1) is the (m + 1)-mode product of the tensor B and vector X
I ε ∈ IRr1×···rD = mth-order error tensor independent of X
I vec(ε) ∼ Normal(0,Σ), where the covariance has a separable
Kronecker covariance structure such that

cov{vec(ε)} = Σ = ΣD ⊗ · · · ⊗Σ1

normality is not essential
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Tensor response regression

Key idea
I assumption: there exist subspaces Sd ⊆ IRrd , d = 1, . . . ,D, st

Y ×d Qd |X ∼ Y ×d Qd , Y ×d Qd Y ×d Pd |X

I Pd ∈ IRrd×rd is the projection matrix onto Sd , Qd = Ird − Pd is the
projection onto the complement space S⊥d

I ×d is the d-mode product

I in plain English: some parts of Y are irrelevant
I Y ×d Qd is the irrelevant information to the regression, while Y ×d Pd

contains all the relevant information
I sound familiar?

I sparsity principle in variable selection: a subset of individual
predictors are irrelevant to the regression

I generalized sparsity principle: shares the same spirit that only part of
information is deemed useful for regressions and the rest irrelevant, but
is also more flexible in that it permits linear combination of the
variables to be irrelevant
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Tensor response regression

Tensor envelope
I why helpful?

I dimension reduction on Y : let Γd ∈ IRrd×ud be a basis for Sd , and
Γ0d ∈ IRrd×(rd−ud ) the complement basis

Y ∈ IRr1×···×rD ⇒ JY ;ΓT
1 , . . . ,Γ

T
DK ∈ IRu1×...×uD , ud ≤ rd

I number of free parameters:

— e.g.,
r1 = r2 = r3 = 64, u1 = u2 = u3 = 10, p = 3

I before: p
∏D

d=1 rd +
∑D

d=1 rd(rd + 1)/2

— 792, 672

I after:
p
∏D

d=1 ud +
∑D

d=1{ud(rd−ud)+ud(ud +1)/2+(rd−ud)(rd−ud +1)/2}

— 9, 240

I difference: p
{∏D

d=1 rd −
∏D

d=1 ud
}

— save 783, 432 parameters

I more efficient than OLS

I tensor response envelope:

TΣ(B) ≡ EΣD

(
B(D)

)
⊗ . . .⊗ EΣ1

(
B(1)

)
Lexin Li Talk @ UC Irvine 11 / 26



Tensor response regression

Tensor envelope
I why helpful?

I dimension reduction on Y : let Γd ∈ IRrd×ud be a basis for Sd , and
Γ0d ∈ IRrd×(rd−ud ) the complement basis

Y ∈ IRr1×···×rD ⇒ JY ;ΓT
1 , . . . ,Γ

T
DK ∈ IRu1×...×uD , ud ≤ rd

I number of free parameters: — e.g.,
r1 = r2 = r3 = 64, u1 = u2 = u3 = 10, p = 3

I before: p
∏D

d=1 rd +
∑D

d=1 rd(rd + 1)/2 — 792, 672
I after:

p
∏D

d=1 ud +
∑D

d=1{ud(rd−ud)+ud(ud +1)/2+(rd−ud)(rd−ud +1)/2}
— 9, 240

I difference: p
{∏D

d=1 rd −
∏D

d=1 ud
}

— save 783, 432 parameters
I more efficient than OLS

I tensor response envelope:

TΣ(B) ≡ EΣD

(
B(D)

)
⊗ . . .⊗ EΣ1

(
B(1)

)
Lexin Li Talk @ UC Irvine 11 / 26



Tensor response regression

Estimation
I estimation:

I maximum likelihood estimation: iterative optimization algorithm
I approximation: one-step optimization algorithm

——————————————————————————
for s = 0, . . . , ud − 1 do

set G s
d = 0 if s = 0 and G s

d = (gd1, . . . , gds) otherwise
construct G s

0d as an orthogonal basis complement to G s
d in IRrd

solve the objective function over w ∈ IRr−s subject to wTw = 1:

wd+1 = argmin
w

log
{
wT

(
(G s

0d )
TΣ

(0)
d G s

0d

)
w
}
+

log

{
wT

(
(G s

0d )
TN(0)

d G s
0d

)−1
w
}

set gd+1 = G s
0dwd+1 ∈ IRrd and normalize to unit length

end for

——————————————————————————

I envelope dimension estimation: a variant of BIC
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Tensor response regression

Theory
I asymptotics:

assuming vec(εi ), i = 1, . . . , n, are i.i.d. with finite fourth moments
I consistency: B̂ it

ENV and B̂os
ENV both converge at rate-

√
n to the true

tensor coefficient BTRUE

I asymptotic normality:
√
nvec(B̂ it

ENV − BTRUE)→ N(0,UENV)

I efficiency: B̂OLS satisfies that
√
nvec(B̂OLS − BTRUE)→ N(0,UOLS),

and UENV ≤ UOLS
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Tensor response regression

Simulation
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Tensor response regression

ADHD analysis

OLS (8, 9, 1) (9, 10, 2) (10, 11, 3)

(10, 10, 1) (10, 10, 2) (10, 10, 10) (10, 10, 20)

Figure: The p-value map, thresholded at 0.05, using the OLS and envelope
method with varying working dimensions. BIC selected (9, 10, 2).

I findings: superior temporal gyrus, and pyramid and uvula in cerebellum
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Tensor response regression

Sparsity and low-rankness
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Tensor response regression

Model
I model:

Y = B ×(D+1) X + ε

I Y ∈ IRr1×···×rD = Dth-order array-valued response; can naturally
handle both a general tensor and a symmetric tensor

I X ∈ IRp = group indicator, plus additional covariates like age, gender
I B ∈ IRr1×···×rD×p = (D + 1)th-order coefficient tensor that captures

the interrelation between Y and X , and is our parameter of interest
I ×(m+1) is the (m + 1)-mode product of the tensor B and vector X
I ε ∈ IRr1×···rD = mth-order error tensor independent of X (no

Kronecker product structure imposed)
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Tensor response regression

Key idea
I low-rank structure:

B =
K∑

k=1

wkβk,1 ◦ · · · ◦ βk,D ◦ βk,D+1

where wk ∈ IR,βk,d ∈ IRd , ‖βk,d‖2 = 1, and βk,D+1 ∈ IRp encodes
the predictor effect

I for D = 2, K = 1, B = JB1,B2K,B1 = β1,B2 = β2,

B = w1 β1 ◦ β2

I for D = 2, K = 2, B = JB1,B2K,B1 = [β
(1)
1 ,β

(2)
1 ],B2 = [β

(1)
2 ,β

(2)
2 ],

B = w1 β
(1)
1 ◦ β

(1)
2 + w2 β

(2)
1 ◦ β

(2)
2
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Tensor response regression

Key idea
I low-rank structure:

I number of free parameters:

— e.g., r1 = r2 = r3 = 64,K = 3, p = 3

I before: p
∏D

d=1 rd

— 786, 432

I after: K(p +
∑D

d=1 rd)

— 585

I difference: p
∏D

d=1 rd − K(p +
∑D

d=1 rd)

— save 785, 847 parameters

I entry-wise sparsity:

‖βk,d‖0 ≤ sd , 1 ≤ d ≤ D

I facilitate the interpretation
I no sparsity constraint on βk,D+1
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Tensor response regression

Estimation
I objective function:

min
wk ,βk,1,...,βk,D+1

1
n

n∑
i=1

∥∥∥Yi −
K∑

k=1

wk(β
T
k,D+1Xi )βk,1 ◦ · · · ◦ βk,D

∥∥∥2

F
,

subject to ‖βk,d‖2 = 1, ‖βk,d‖0 ≤ sd

I alternating updating algorithm: thanks to the bi-convexity
I update {wk ,βk,1, . . . ,βk,D}: solved by a hard-thresholding sparse

tensor decomposition method
I update βk,D+1: closed form solution

I symmetry can be obtained by setting βk,1 = . . .βk,D = βk

I rank estimation: a variant of BIC
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Tensor response regression

Theory
I non-asymptotic error bound:

D

(
Θ̂

(t)
,Θ∗

)
≤ κtε︸︷︷︸

computational error

+
1

1− κ
max

{
C · η

(
1
n

n∑
i=1

εi , s

)
,
C̃√
n

}
︸ ︷︷ ︸

statistical error

,

I for the actual minimizer obtained from our optimization algorithm,
instead of a global minimizer that is not guaranteed to obtain

I interplay between the computational efficiency and the statistical rate
of convergence, i.e., the computational error decays geometrically with
the iteration number t, whereas the statistical error remains the same
when t grows

I choose the maximal number of iterations T , such that the
computational error is dominated by the statistical error

I the result holds for any distribution of the error tensor; further results
when εi is a Gaussian tensor, or a symmetric matrix
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Tensor response regression

Simulation
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Tensor response regression

Simulation
Graph Pattern: True
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Tensor response regression

ASD analysis

I findings: cerebellum, superior parietal lobule, precuneus
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I findings: left middle frontal gyrus, temporal lobe
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Tensor response regression

Thank You!
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