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Outline

» talk outline:
> overview
» motivating examples
> tensor response regression: sparsity and low-rankness
> tensor response regression: generalized sparsity and envelope approach
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> is a super exciting area, because

» scientifically, a battery of important but challenging neurological
disorders, e.g., Alzheimer's disease (AD), attention deficit hyperactivity
disorder (ADHD), autism spectrum disorder (ASD), as well as normal
aging

» statistically, an array of diverse statistical problems, constantly
demanding new models, theory, algorithms

» large public neuroimaging databases are becoming available

» not overly crowded, yet

» even my in-laws got interested in what | am doing...
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Overview

Overview
>

» anatomical magnetic resonance imaging (MRI), functional magnetic
resonance imaging (fMRI), positron emission tomography (PET),
electroencephalography (EEG), ...

> a unifying form: , a.k.a.

N

fMRI
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Overview

» neuroimaging problems under investigation:
> tensor regression

> tensor predictor regression
>

» brain connectivity analysis
> graphical model estimation (undirected, directed, Gaussian,
non-Gaussian, static, dynamic)
» graph inference
> graph based regression (association) analysis

» multimodal neuroimaging analysis

> integrative classification

> correlated region identification and inference
> more topics

> longitudinal imaging analysis

> imaging genetics

> imaging causal inference
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Overview

Motivation

» attention deficit hyperactivity disorder (ADHD) study:

» one of the most commonly diagnosed child-onset neurodevelopmental
disorders, with an estimated childhood prevalence of 5 — 10% worldwide

» 776 subjects: 285 combined ADHD subjects and 491 normal controls

» anatomical MRI images were acquired and

» MRI is in the form of , 256 x 198 x 256
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Motivation

» attention deficit hyperactivity disorder (ADHD) study:
» one of the most commonly diagnosed child-onset neurodevelopmental
disorders, with an estimated childhood prevalence of 5 — 10% worldwide
» 776 subjects: 285 combined ADHD subjects and 491 normal controls
» anatomical MRI images were acquired and
» MRI is in the form of , 256 x 198 x 256

> autism spectrum disorder (ASD) study:

> an increasingly prevalent neurodevelopmental disorder; 1 in 68
american children according to CDC in 2015

> 795 subjects: 362 ASD subjects and 433 normal controls

» functional MRI images were acquired and into 2 forms

» fractional amplitude of low-frequency fluctuations (fALFF), which
characterizes the intensity of spontaneous brain activities, and is in the
form of , 91 x 109 x 91

» partial correlation between brain regions of interest, which describes
the conditional dependency and synchronization of brain systems,
is in the form of , 116 x 116
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» scientific question of interest:
» understand the change of the tensor image or brain connectivity
pattern as the predictors such as disease status varies, adjusting

for the demographical and other variables
» identify brain regions exhibiting different patterns across subject groups
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Overview

Motivation

» scientific question of interest:
» understand the change of the tensor image or brain connectivity
pattern as the predictors such as disease status varies, adjusting

for the demographical and other variables
» identify brain regions exhibiting different patterns across subject groups

» statistical formulation:
» predictors: binary diagnostic status, age, gender, ...

> response:
» challenges: extremely high dimensionality and small sample size;

complex data structure
» solution I:
» solution II:
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Tensor response regression

Generalized sparsity and envelope
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Tensor response regression

» model:
Y = BX(D+1)X+EZ

Y € R™* %™ = Dth-order array-valued response; e.g., MRI scan

X € IRP = group indicator, plus additional covariates like age, gender
B € R**oxP = (D 4 1)th-order that captures
the interrelation between Y and X, and is our

> X(m+1) 1S the (m + 1)-mode product of the tensor B and vector X

» ¢ € R"*"® = mth-order error tensor independent of X

» vec(e) ~ Normal(0, X), where the covariance has a

such that

v

v

v

cov{vec(e)} =Z=ZpR---@X;

normality is not essential
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Tensor response regression

Key idea
> there exist subspaces Sy CIR™®, d=1,...,D, st

Y Xq Qd’XNYXd Qi, Y xXgQulY Xy Pd\X
» Py € IR'¥*"d is the projection matrix onto Sy, Q4 = I, — Py is the

projection onto the complement space S
> X4 is the d-mode product
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Key idea

>

there exist subspaces Sy CIR™®, d=1,...,D, st

Y x4 Qd’XNYXd Qu, Y XgQulLY Xy Pd\X
Py € IR™¥*"4 is the projection matrix onto Sy, Qg = I,, — Py is the

projection onto the complement space S
X 4 is the d-mode product

» in plain English:

Y X4 Qq is the irrelevant information to the regression, while Y x4 Py
contains all the relevant information
sound familiar?

. a subset of
predictors are irrelevant to the regression

: shares the same spirit that only part of
information is deemed useful for regressions and the rest irrelevant, but
is also more flexible in that it permits of the
variables to be irrelevant BERKELEY.
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Tensor response regression

Tensor envelope

» why helpful?
> on Y: let [y € IR™¥*Y be a basis for Sy, and
Mg € IR™*(ra=ta) the complement basis

Y c R*%P = [Y;T],...,F[] € R¥>Xto < ry
» number of free parameters:

> before: p[15_, ra+ 35 ra(ra +1)/2
> after:

pT1o s va+> 0 {ua(ra — ua)+ ua(ua+1) /24 (ra— ug)(ra— ua+1)/2}

> more than OLS

TE(B) = 523:3 (B(D)) ®...Q 821 (B(l))
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Tensor envelope

» why helpful?
> on Y: let [y € IR™¥*Y be a basis for Sy, and
Mg € IR™*(ra=ta) the complement basis

Y e R*%P = [Y;T],..., T[] € R¥>>4p g <ry
» number of free parameters: — e.g.,

n=rn=r3=64uy=uw=u3=10,p=3
> before: p HdD:1 rg + 25:1 ra(ra +1)/2 — 792,672

> after:
pTlgy ta+ g y{ta(ra— ua)+ua(ug+1)/2+ (rs — ug)(ra— ug+1)/2}
— 9,240
> — save 783,432 parameters
> more than OLS

TE(B) = 523:3 (B(D)) ®...Q 821 (B(l))
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Tensor response regression

Estimation

> estimation:
» maximum likelihood estimation: iterative optimization algorithm

> approximation: one-step optimization algorithm

fors=0,...,uy —1do
set G5 = 0if s =0 and G = (41, - - -, 8ds) Otherwise
construct Gy, as an orthogonal basis complement to G in IR'd
solve the objective function over w € IR"~* subject to w'w = 1:

Wgy1 = arg mMiln log {WT ((ng)T):fjo) ng) w} +
-1
log {WT ((ng)TN((jo) ng> w}

set 8411 = Gj wqi1 € R'd and normalize to unit length

end for
» envelope dimension estimation: a variant of BIC
BERKELEY.
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Tensor response regression

Theory
» asymptotics:
assuming vec(e;), i = 1,...,n, are i.i.d. with finite fourth moments
> §gNV and §§§W both converge at rate-y/n to the true
tensor coefficient Brrug
> \/EVGC(BgNV — BTRUE) — N(O, UENV)
> EOLS satisfies that ﬁvec(EOLs — Brrue) — N(0, Uors),

and Ugnv < Uors
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Tensor response regression

Simulation

True signal
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Tensor response regression

ADHD analysis

OLS (8,9,1) (9,10,2) (10,11,3)

(10,10,1) (10,10,2) (10,10, 10)

(10,10, 20)
Figure: The p-value map, thresholded at 0.05, using the OLS and envelope
method with varying working dimensions. BIC selected (9, 10, 2).

» findings: superior temporal gyrus, and pyramid and uvula in cereh@

BERKELEY.
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Tensor response regression

Sparsity and low-rankness
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Tensor response regression

» model:
Y=B8B X(D+1)X+€
» Y € R"** %0 = Dth-order array-valued response; can naturally
handle
» X € IRP = group indicator, plus additional covariates like age, gender
» B e IR**moxP = (D 4 1)th-order that captures

the interrelation between Y and X, and is our
> X(m41) is the (m + 1)-mode product of the tensor B and vector X
» e € R"**""> = mth-order error tensor independent of X (no
Kronecker product structure imposed)
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Key idea

>
K
B = Z WkBr1 0 °Bip B pt1
k=1

where wy € R, By 4 € RY, 1Bkall2 =1, and By p11 € IRP encodes
the predictor effect
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Key idea

>
K
B = Z WkBr1 0 °Bip B pt1
k=1

where wy € R, By 4 € RY, 1Bkall2 =1, and By p11 € IRP encodes
the predictor effect

> fOI‘D:2, K:]., B:[[Bl,Bg]LBl:,@l,Bg:,32,
B=w 3,08,
> for D=2, K=2, B=[B;,B],B = [8", 8], B, = [, B,

B=w f" o) +w 5 0
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Key idea

| 4

» number of free parameters:
> before: pl_[dD:1 rd
> after: K(p+ Y0 , ra)

>
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Key idea

»
= Qoo 4 4 [J—oo
» number of free parameters: —e.g, n=rn=r3=64,K=3,p=3

> before: pl_[dD:1 rq — 786,432
> after: K(p+ >0, ry) — 585
> — save 785, 847 parameters
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Tensor response regression

Key idea
»
= gél -+ . + gél
» number of free parameters: —e.g, n=rn=r3=64,K=3,p=3

> before: pl_[dD:1 rq — 786,432
> after: K(p+ >0, ry) — 585
> — save 785, 847 parameters

1Bk allo <s4, 1<d<D

» facilitate the interpretation
> no sparsity constraint on 8 pq
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Tensor response regression

Estimation
» objective function:
2

. 1
min —
Wi, Bk,158k,p41 N

Zn: H Yi - ZK: wk(Bi,p+1Xi)Brr oo /Bk,DH
i—1 =

subject to [|Bx 4ll2 = 1, 1Bk allo < sd

F7

» alternating updating algorithm: thanks to the

» update {wk, By 1,---, Bk p}: solved by a hard-thresholding sparse
tensor decomposition method
» update B, pq: closed form solution

> can be obtained by setting B, ; = ... 8y p = B

» rank estimation: a variant of BIC
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Theory

» non-asymptotic error bound:

4 * t 1
D(@ ,@>< K'e +mmax Zs,, ,

computational error

<l

statistical error

» for the actual minimizer obtained from our optimization algorithm,
instead of a global minimizer that is not guaranteed to obtain

» interplay between the computational efficiency and the statistical rate
of convergence, i.e., the computational error decays geometrically with
the iteration number t, whereas the statistical error remains the same
when t grows

» choose the maximal number of iterations T, such that the
computational error is dominated by the statistical error

» the result holds for any distribution of the error tensor; further results
when €; is a Gaussian tensor, or a symmetric matrix

Talk © UC Irvine



o
[}
=
=
o
@
c
[0}

=

ion

lat

imu

S

Column
Dimensions: 100 x 100

Column
Dimensions: 100 x 100

H |
§i® fmey

Column
Dimensions: 100 x 100

moy

Hub Graph Small World Graph

Random Graph

sanjeauabig

sanjeauabig

sanjeauabig

Rank index

Rank index

Rank index

BERKELEY.

22 /26

o
=

2
]
=)
©
X

T
i




Tensor response regression

Simulation

Graph Pattern: True Graph Pattern: OLS Graph Pattern: Ours
Graph Pattern: True Graph Pattern: OLS Graph Pattern: Ours

Graph Pattern: OLS

BERKELEY.
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ASD analysis

OLS

-
>\L,\ X

o

» findings: cerebellum, superior parietal lobule, precuneus

ala
UksvERsty O cALoRNIA

BERKELEY.

Talk © UC Irvine 24 /26



Hippocampus_L
Insida_L
Lingaal L

Occipial_inf_L

Occipital_Mid_L
Oceipial_Sup_L

Offactory_L
Palidum L
Paracental_Lobule_L
ParaHippacampal L

Parietal_inf L
etab Sup_L
Postcantral_L

» findings: left middl

Frontal_Med_Orb_R

Fusiform_R

Paracentrab Lobule R
Paratippecampal R
Parieta_Int_R

e frontal gyrus, temporal lobe
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Tensor response regression

Thank You!
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