2019 First year Exam - Theory

Statistics 200ABC

June 21, 2019 9:00 to 1:00

Instructions:

There are 7 questions on the examination, each with multiple parts. Select any 5 of them to solve. If you attempt to solve more than 5 questions, you are only to turn in the 5 you want graded. If you turn in partial solutions to more than 5 questions, only 5 will be graded.

Each of the 5 problems you attempt to solve will be worth equal credit, with each accounting for 20% of your final score on this examination.

Your solutions to each of the 5 problems you solve should be written on separate sheets of paper.

DO NOT WRITE ON BOTH SIDES

Label each sheet in the upper right hand corner:

- 1) with your student id number
- 2) with the problem number
- 3) and the page number for that problem.

For example, the labeling on a page might be:

ID#912346378

Problem 3, page 2

1. Consider a regression model in which response variables $Y_i, i = 1, ..., n$ are presumed to satisfy

$$Y_i = \beta_0 + \beta_1 Z_i + \beta_2 W_i + \epsilon_i$$

with the ϵ_i 's independent and identically distributed such that $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

- (a) Suppose we wish to implement a global test of the model, so that we wish to test the null hypothesis $H_0: \beta_1 = \beta_2 = 0$ versus the alternative hypothesis that at least one of β_1 or β_2 are non-zero. Let $\overrightarrow{\beta}$ denote the ordinary least squares estimator (OLSE) of $\overrightarrow{\beta} = (\beta_0, \beta_1, \beta_2)^T$. Assuming σ^2 is known, provide a test statistic that can be used to test the above hypothesis and state the critical value that would be used to provide a level α test of H_0 . (Note: You may leave the test statistic in matrix form and you need not provide a numeric critical value, but should say how the critical value would be obtained.)
- (b) Suppose that at least one of β_1 or β_2 are non-zero. What is the distribution of the test statistic you provided in part (a)?
- (c) In general, σ^2 is unknown and must be estimated. Provide a consistent estimator of σ^2 , call it $\hat{\sigma}^2$, and briefly justify the consistency of your estimator.
- (d) If you replace σ^2 with $\widehat{\sigma}^2$ in your test statistic in (a), what is the asymptotic distribution of the resulting test statistic? Justify your answer.

Let $X_1, X_2, ...$ be independent and identically distributed Uniform (0,1) random variables. Conditional on $X_i = x_i, Z_i \sim Bernolli(x_i)$ for $i = 1, 2, \cdots$.

(a) Let

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Discuss the large sample behavior of \bar{X}_n .

- (b) Find the distribution of $-ln(X_i)$.
- (c) Let

$$G_n = (\prod_{i=1}^n X_i)^{1/n}.$$

Show that G_n converges in probability to a constant.

- (d) Given that $Z_i = 0$, what is the probability of $X_i < 0.5$?
- (e) Let

$$\bar{Z}_n = \frac{1}{n} \sum_{i=1}^n Z_n.$$

Discuss the large sample behavior of \bar{Z}_n .

After examining relevant air pollution data for a certain city in the United States, an environmental scientist postulates that the distribution of the carbon monoxide concentration level X (measured in parts per million, or ppm) above k ppm (where k is a known positive constant) can be accurately modeled by the one-parameter Pareto density function

 $f_X(x) = \frac{\theta k^{\theta}}{x^{\theta+1}}, \ 0 < k < x < +\infty, \ \theta > 3.$

- (a) Find an explicit expression of the cumulative distribution function (CDF) $F_X(x)$, and then use this CDF to find the numerical value of Pr[k+1 < X < k+3|X > k+1] when k=1 and $\theta=4$.
- (b) Develop an explicit expression for $\mu_3 = E\{[X E(X)]^3\}$, find the limiting value of μ_3 as $\theta \to +\infty$, and explain why this limiting value makes sense even though the above density function is clearly non-symmetric.
- (c) After careful thought, this environmental scientist suggests that the distribution of the random variable $Y = \ln(X)$ has more scientific relevance than the distribution of X itself. Develop an explicit expression for the moment generating function $M_Y(t)$ of Y, and then use $M_Y(t)$ directly to find an explicit expression of E(Y).

END OF QUESTION (3)

The concentration Y of lead in the blood of children of age x is postulated to have the density

 $f_Y(y|x,\beta) = (\beta x)^{-1} e^{-y/(\beta x)}, \ y > 0, \ x > 0, \ \beta > 0,$

where x is a deterministic value (the so-called fixed design in contrast to the random design where X is random). For n pairs of independent observations $(x_1, Y_1), \ldots, (x_n, Y_n)$, consider the following:

- (a) Derive explicit expressions for the MLE $\hat{\beta}_{ML}$ of β as well as for its mean and variance given (x_1, \ldots, x_n) .
- (b) Derive explicit expressions for the ordinary least squares estimator $\hat{\beta}_{LS}$ of β , which minimizes $Q = \sum_{i=1}^{n} [Y_i E(Y_i)]^2$, as well as for its mean and variance given (x_1, \ldots, x_n) .
- (c) Derive explicit expressions for the method of moments estimator $\hat{\beta}_{MM}$ of β , which solves the equation $E(\bar{Y}) = \bar{Y}$, as well as for its mean and variance given (x_1, \ldots, x_n) .
- (d) Which of the above three estimators would you recommend? (Be precise and thorough in your statistical reasoning.)
- (e) Now consider a random design with iid observations $(X_1, Y_1), \ldots, (X_n, Y_n)$ for a population with conditional density

$$f_{Y|X}(y|x,\beta) = (\beta x)^{-1} e^{-y/(\beta x)}, \ y > 0, \ x > 0, \ \beta > 0,$$

and X follows an unknown distribution $f_X(x)$ that does not depend on β . Derive the asymptotic distribution of the MLE of β .

END OF QUESTION (4)

Suppose that $Y = (Y_1, \dots, Y_n)^T$ is an $n \times 1$ random vector and

$$Y = 1\beta_0 + X\beta + \epsilon$$

where X is a $n \times p$ design matrix with rank p, β is a $p \times 1$ vector of coefficient parameters, 1 is an $n \times 1$ vector of 1's, ϵ is a multivariate normal random vector with mean $\mathbf{0}_{n \times 1}$ and variance-covariance matrix $\sigma^2 I$. You may assume that 1 is linearly independent with X.

- (a) Show that the least square estimate of β is $\hat{\beta} = [X^T(I \frac{J}{n})X]^{-1}X^T(I \frac{J}{n})Y$, where J is an $n \times n$ matrix of 1's, i.e., $J = \mathbf{1}\mathbf{1}^T$.
- (b) The total sum of squares in Y is defined as $SSTO = \sum_{i=1}^{n} (Y_i \bar{Y})^2$, where \bar{Y} is the average of the $Y_i's$. Show that $SSTO = Y^T(I \frac{J}{n})Y$.
- (c) Show that $E[Y^TAY] = \sigma^2 tr(A) + E[Y]^T A E[Y]$. Use this result to find the expected value of SSTO and express your answer in terms of β, σ^2, X , and necessary constants.
- (d) The result in (c) suggests that the variance in Y is contributed by two sources, one of which can be measured by the residual sum of squares: $RSS = (Y \hat{Y})^T (Y \hat{Y})$. Show that $RSS = Y^T (I \frac{J}{n} \tilde{X}(\tilde{X}\tilde{X}^T)^{-1}\tilde{X}^T)Y$ where $\tilde{X} = (I \frac{J}{n})X$.
- (e) Let SSX = SSTO RSS. Use RSS, SSX, and necessary constants to construct a random variable that follows an F-distribution when $\beta = 0$. Be sure to justify your answer.

Consider two independent random variables X and Y with the same geometric distribution with density $p(1-p)^{x-1}$, $0 , <math>x = 1, 2, \ldots$, where p is the success probability.

- (a) Show that $Pr(X = Y) = \frac{p}{2-p}$.
- (b) Show that $Pr(X \ge 2Y) = \frac{1-p}{3-3p+p^2}$.
- (c) Prove that $\min\{X,Y\}$ and X-Y are independent random variables.

END OF QUESTION (6)

7. Consider a random sample X_1, \ldots, X_n from a distribution with the density

$$f(x|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp(-\beta x)$$

where x > 0, $\alpha > 0$, and $\beta > 0$.

- (a) Find the MLE of $\theta = (\alpha, \beta)$.
- (b) Find the Fisher information $I(\theta)$.
- (c) Write down the asymptotic distribution of θ .
- (d) Derive the Cramer-Rao lower bound for the variance of unbiased estimators of β .
- (e) Provide a large sample confidence interval for β .
- (f) Given α , find the conjugate prior for β and write down the corresponding posterior distribution.

Table 1: Common distributions and densities.

Table 1: Common distributions and delistics.				
Distribution	Notation	Density		
Bernoulli	$\mathrm{Bern}(heta)$	$f(y \theta) = \theta^y (1-\theta)^{1-y}$		
Binomial	$\mathrm{Bin}(n, heta)$	$f(y \theta) = \binom{n}{y} \theta^y (1-\theta)^{n-y}$		
Multinomial	$\mathrm{Multi}(n; \theta_1, \theta_2, \ldots, \theta_K)$	$f(y heta) = rac{n!}{y_1!y_2!y_K!} heta_1^{y_1} heta_2^{y_2}\cdots heta_K^{y_K}$		
Beta	$\mathrm{Beta}(a,b)$	$p(\theta) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1} I_{(0,1)}(\theta)$		
Uniform	U(a,b)	$p(\theta) = \frac{I_{(a,b)}(\theta)}{b-a}$		
Poisson	$Pois(\theta)$	$f(y \theta) = \theta^y e^{-\theta}/y!$		
Exponential	$\operatorname{Exp}(heta)$	$f(y \theta) = \theta e^{-\theta y} I_{(0,\infty)}(y)$		
Gamma	Gamma(a, b)	$p(\theta) = [b^a/\Gamma(a)]\theta^{a-1}e^{-b\theta}I_{(0,\infty)}(\theta)$		
Chi-squared	$\chi^2(n)$	Same as $Gamma(n/2, 1/2)$		
Weibull	$\mathrm{Weib}(\alpha,\theta)$	$f(y \theta) = \theta \alpha y^{\alpha-1} \exp(-\theta y^{\alpha}) I_{(0,\infty)}(\theta)$		
Normal	N(heta,1/ au) .	$f(y \theta,\tau) = (\sqrt{\tau/2\pi}) \exp\left[-\tau(y-\theta)^2/2\right]$		
Student's t	$t(n, heta,\sigma)$	$f(y \theta) = [1 + (y - \theta)^2/n\sigma^2]^{(n+1)/2}$		
·		$\times \Gamma[(n+1)/2]/\Gamma(n/2)\sigma\sqrt{n\pi}$		
Cauchy	$Cauchy(\theta)$	same as $t(1, \theta, 1)$		
Dirichlet	$Dirichlet(a_1, a_2, a_3)$	$p(\theta) = \Gamma(a_1 + a_2 + a_3) / \Gamma(a_1) \Gamma(a_2) \Gamma(a_3)$ $\times \theta_1^{a_1 - 1} \theta_2^{a_2 - 1} (1 - \theta_1 - \theta_2)^{a_3 - 1}$ $\times I_{(0,1)}(\theta_1) I_{(0,1)}(\theta_2) I_{(0,1)} (1 - \theta_1 - \theta_2)$		

Table 2: Means, Modes, and Variances.

^		
heta .	0 if $\theta < .5$ 1 if $\theta > .5$	$\theta(1-\theta)$
$n\theta$	integer closest to $n\theta$	n heta(1- heta)
a/(a+b)	(a-1)/(a+b-2)	$ab/(a+b)^2(a+b+1)$
	if $a > 1, b \ge 1$	
5(a+b)	everything a to b	$(b-a)^2/12$
	integer closest to θ	θ
./θ	0	$1/\theta^2$
u/b	(a-1)/b	a/b^2
1	if $a > 1$	
	n-2	2n
	if $n > 2$	·
$[(\alpha+1)/\alpha]/\theta$	$[(\alpha-1)/\alpha]^{1/\alpha}/\theta$	$\Gamma[(\alpha+2)/\alpha]-\mu^2$
· .	θ	$1/\tau$
	θ	$\sigma^2 n/(n-2)$
$n \ge 2$		if $n \ge 3$
	$a/(a+b)$ $5(a+b)$ $/\theta$ $/b$	$1 \text{ if } \theta > .5$ $n\theta \qquad \text{integer closest to } n\theta$ $a/(a+b) \qquad (a-1)/(a+b-2)$ $\text{if } a > 1, b \ge 1$ $\text{everything } a \text{ to } b$ $\text{integer closest to } \theta$ $/\theta \qquad 0$ $/b \qquad (a-1)/b$ $\text{if } a > 1$ $n-2$ $\text{if } n > 2$ $[(\alpha+1)/\alpha]/\theta \qquad [(\alpha-1)/\alpha]^{1/\alpha}/\theta$ θ

